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Living cells naturally use feedback to maintain homeostasis. Synthetic - Deterministic analysis: Root locus results show that rAIF cannot shift 2
biology aims to harness this principle to build circuits that can automati- eigenvalues arbitrarily left, limiting speed. This constraint is removed in
cally correct their behavior under disturbances ™. A key goal is robust sAIF, allowing full pole placement and faster, well-damped dynamics.
perfect adaptation (RPA) — the ability to return to a setpoint despite - Stochastic analysis: Linear noise approximation indicates that sAIF can
changes or noise. The reference-based antithetic integral feedback reduce output noise (CV) below open-loop levels, but its improvement is
(rAIF) motif @ achieves this but may sacrifice speed and increases variabi- bounded by the P controller if 0 can be tuned. This confirms that sAIF’s
lity. We show that a sensor-based version of the AIF (sAIF) introduces noise attenuation arises from its ,hidden” proportional component.
extra proportional feedback by simply modifying the actuation mecha- . ) o _ 5 o
nism and without additional circuitry ©. We establish theoretically and Non-ideal Setting: Dilution of control species @ as dellsalau I|m|;cs
experimentally in bacteria (using inteins) that sAIF preserves RPA while RPA to near-RPA. So why add extra circuitry of sAIF, and not just stick to fP?
simultaneously enhancing dynamic performance and attenuating noise. Theorem: Given a fixed repressor @) and a desired setpoint we have:
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. 3. Genetic Implementation in Bacteria with Split Inteins
% A = fP A ~—sAlF A P p
% FA - Splitinteins are small proteins that can undergo splicing reactions.
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P - 's stable - 3 open loops: OL1, OL2, and OL3 with 1, 2 and 3 plasmids, respectively.
J &) - 2closed loops: fP and sAIF. - Regulated process: gene expression.
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2. Theoretical & Computational Results R steady-state means (disturbance rejection)
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(intrinsic noise) ".. “ SAF — sAIF enjoys disturbance rejection over a wide dynamic range, delivers
T . ?ihe,ed P high dynamic performance, and attenuates noise compared to OL2 & OL3
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