

Engineering Sensor-Based Antithetic Integral Controllers for Enhanced Dynamic Performance and Noise Attenuation

Maurice Filo^{1,2,✉}, Stephanie K. Aoki^{1,2,✉}, Mucun Hou^{1,2,✉}, Stanislav Anastassov^{1,✉}, and Mustafa Khammash^{1,*✉}

¹Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland

²These authors contributed equally

*Correspondence: mustafa.khammash@bsse.ethz.ch

SUMMARY

Effective cellular regulation relies on feedback control mechanisms to maintain homeostasis and mitigate environmental fluctuations. Simple repression-based negative feedback is a widely used regulatory strategy, but it provides limited adaptation capabilities and struggles to effectively reject disturbances. Here, we theoretically and computationally demonstrate that a sensor-based Antithetic Integral Feedback (sAIF) controller enhances this regulatory motif as it achieves robust adaptation while ensuring good transient performance and intrinsic noise suppression. By leveraging a topological refinement, sAIF embeds a proportional feedback component within its integral feedback structure, effectively implementing a biomolecular Proportional-Integral (PI) controller with a single actuation reaction. Theoretical analysis and simulations reveal that sAIF outperforms conventional negative feedback and standard AIF controllers, achieving superior response speed and lower cell-to-cell variability. We implement this controller in *Escherichia coli* using inteins—self-splicing protein segments—to construct a genetically encoded feedback loop. Experimental results confirm that sAIF provides rapid adaptation and robust disturbance rejection over a broad dynamic range. Furthermore, we show that at low expression levels—where noise is most pronounced—the sAIF controller exhibits lower total noise than the parts-matched, no-feedback configuration in a multi-plasmid context that introduces extrinsic noise due to plasmid copy-number variability. This observation is supported by simulations incorporating both intrinsic and extrinsic noise. These findings establish a generalizable design principle for engineering high-performance biological controllers, with broad implications for synthetic biology, metabolic engineering, and cell-based therapies.

KEYWORDS

Genetic Circuits, Robust Perfect Adaptation, Inteins, Integral Feedback Control, Chemical Reaction Networks, Noise, Homeostasis, Cybergenetics

INTRODUCTION

Living cells are complex dynamical systems that interact with their environment and endure disturbances that can disrupt their biomolecular processes. To robustly

maintain homeostasis, cells often rely on exquisite feedback control mechanisms^{1–4}. Synthetic biology⁵ aims to mimic and enhance these natural control capabilities by engineering biomolecular systems and embedding them inside the cells to sense, compute, and actuate in a programmable manner^{6,7}. A major challenge in this field is designing feedback controllers capable of managing noise and uncertainty while achieving precision and high performance. Advances in control-theoretic tools^{8–12} have driven progress, giving rise to Cybergenetics¹³, a discipline at the intersection of synthetic biology and control theory, fostering novel strategies for engineering resilient biomolecular systems.

One of the fundamental tasks of synthetic biomolecular feedback controllers is to maintain homeostasis, a critical property with transformative potential in fields like bioproduction, metabolic engineering, and cell-based therapies, where many diseases stem from homeostatic failure¹⁴. Robust Perfect Adaptation (RPA)^{15–17} is a stringent form of homeostasis, ensuring exact steady-state regulation of a target variable to a setpoint despite varying initial conditions, uncertainties, and constant disturbances. Achieving RPA often requires integral feedback, which drives the steady-state error—the deviation from the desired setpoint—to zero by mathematically integrating the error signal over time^{18,19}. The antithetic integral feedback (AIF) controller²⁰ implements this mechanism as a biochemical reaction network, capable of achieving RPA in both deterministic and stochastic settings where noise enter the dynamics. Stochastic noise²¹ can be categorized as intrinsic, arising from the random timing of biochemical reactions, or extrinsic, stemming from variations in global cellular factors such as plasmid copy number, gene expression capacity, or cell size. The AIF motif is proven to be both necessary and minimal for RPA in the stochastic regime^{22,23}. Supported by control theory, AIF-based controllers and their variants have rapidly found their way to experimental implementations in *Escherichia coli*^{22,24,25} and mammalian cells^{26–28}.

Since its introduction, efforts to enhance the AIF controller have focused on optimizing dynamic trade-offs^{29–31} or incorporating additional circuitry^{32–41}, including Proportional-Integral-Derivative (PID) controllers and anti-windup strategies. Standalone integral controllers, such as AIF, face limitations: they can only partially shape the dynamic response^{32,33} and achieve RPA at the cost of increased intrinsic stochastic noise^{34,42} or energetic burden⁴², resulting in elevated cell-to-cell variability. These drawbacks can be mitigated by adding proportional and derivative components. In particular, adding proportional feedback was shown to improve dynamic

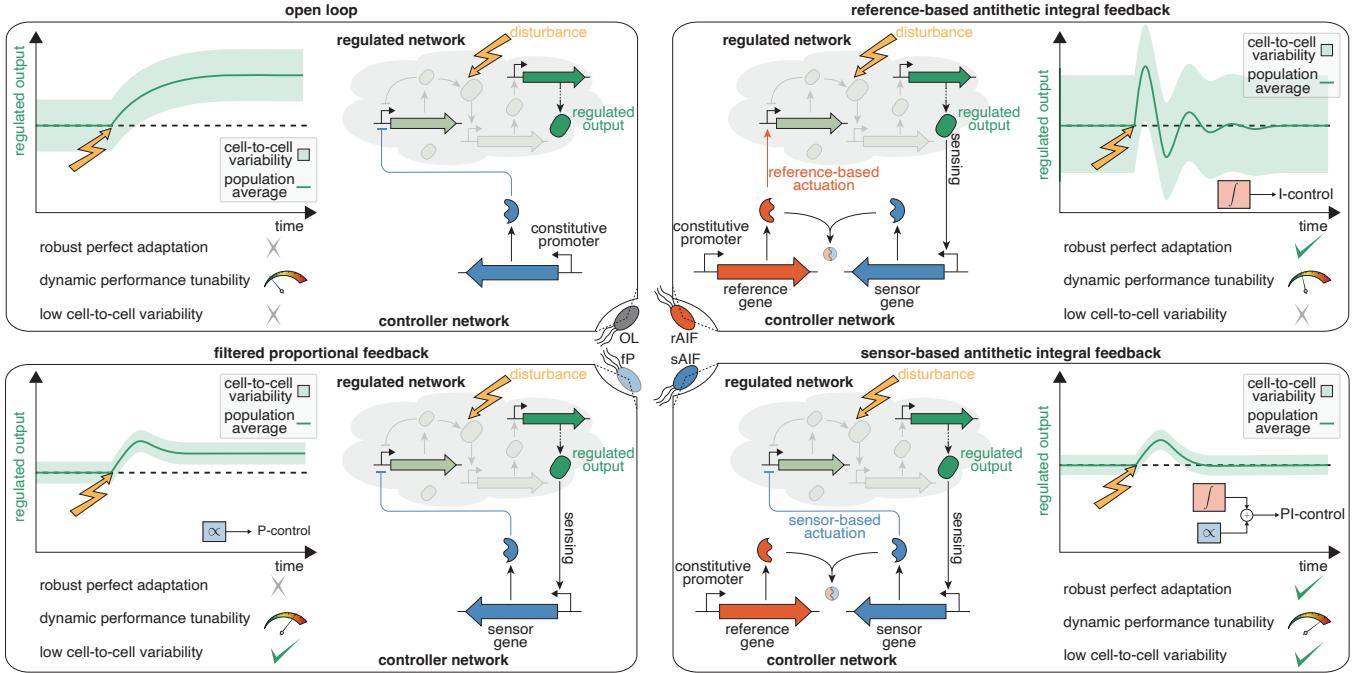


Figure 1: Sensor-based antithetic integral feedback (sAIF) controllers not only achieve Robust Perfect Adaptation (RPA) but also improve dynamic performance and reduce intrinsic cell-to-cell variability. The figure illustrates four genetic circuits for robustly regulating a target output within an arbitrary network. The top-left shows an open-loop configuration without feedback, while the bottom-left depicts a (filtered) proportional feedback controller providing negative feedback from the regulated output via the sensor gene. The top-right and bottom-right circuits represent reference-based (rAIF) and sensor-based (sAIF) AIF controllers, where two genes encode mutually sequestering proteins. Both AIF circuits include a constitutively expressed reference gene, differing in actuation mechanisms via the reference or sensor genes. The plots show that neither the open-loop nor proportional controllers achieve RPA, though the proportional controller reduces steady-state error compared to open-loop. In contrast, rAIF and sAIF both achieve RPA, with sAIF surpassing rAIF by offering superior dynamics and reduced variability, a feat paralleled by the proportional controller. These properties are supported by theory and experiments, attributed to a “hidden” proportional component within the sAIF design.

96 performance and reduce noise^{32–34}.

97 In this paper, we examine and genetically implement
98 a simple variant of the AIF motif, first introduced in²⁰
99 Fig. S1 and more recently studied in⁴². This variant re-
100 tains the basic AIF network topology but replaces one
101 actuation reaction, forming a sensor-based AIF topol-
102 ogy (sAIF) shown in Fig. 1. While initially regarded as
103 a standalone integral controller, we demonstrate that it
104 contains a “hidden” proportional component, realizing a
105 *minimal* Proportional-Integral (PI) controller. The design
106 is *minimal* in that it introduces no new species or reac-
107 tions to the antithetic motif, which is shown to be the
108 minimal integrator in the stochastic setting³⁸. Instead,
109 a single reaction is replaced. This subtle modification
110 yields all the added benefits of proportional control, in-
111 cluding improved dynamic response and intrinsic noise
112 attenuation, without imposing any additional complexity
113 or burden relative to the original integral controller.

114 To implement the sAIF controller in bacteria, we uti-
115 lized inteins for genetic engineering²⁶. Inteins are pro-
116 teins that perform protein splicing reactions without ad-
117 ditional cofactors^{43–45}. Split inteins, referred to as Int^N
118 and Int^C, enable sequence exchange, cleavage, or liga-
119 tion by flanking protein domains, offering versatile func-
120 tionalities. Previously, we used split inteins to construct
121 reference-based AIF controllers in mammalian cells²⁶
(Fig. 1). Building on this, we engineer the first biomole-
122 cular PI controller in *E. coli* by employing split inteins to
123 implement a sensor-based AIF topology. Our experi-
124 mental results confirmed its theoretically predicted ability
125 to achieve RPA. The high dynamic performance observed

127 in *E. coli*, alongside our prior mammalian cell study, high-
128 lights inteins’ versatility across life domains. While our
129 theoretical analyses focus on intrinsic noise, our exper-
130 imental data also reflect the impact of extrinsic noise
131 arising from plasmid copy number variability in our multi-
132 plasmid design. Even under these conditions, the data
133 show that at low expression levels, closed-loop imple-
134 mentations (including that of the sAIF controller) exhibit
135 lower total noise than open-loop implementations with
136 comparable plasmid copy number variability, consistent
137 with stochastic simulations that account for both intrinsic
138 and extrinsic noise.

Notation

139
140 Uppercase bold letters, e.g. \mathbf{X}_1 , denote species names.
141 Their lowercase counterparts, e.g. $x_1(t)$, represent de-
142 terministic time-varying concentrations, while uppercase
143 counterparts, e.g. $X_1(t)$, represent stochastic copy num-
144 bers, with t as time. Over-bars, e.g. $\bar{x}_1 \triangleq \lim_{t \rightarrow \infty} x_1(t)$,
145 indicate steady-state values (when they exist). Tildes,
146 e.g. $\tilde{x}_1(t) \triangleq x_1(t) - \bar{x}_1$, represent deviations from steady-
147 state, and hats, e.g. $\hat{x}_1(s)$, denote the Laplace transform
148 of $\tilde{x}_1(t)$, where s is the Laplace variable. Variables s and
149 t are omitted when clear from context. The Jacobian of a
150 multi-variable function f , evaluated at $\bar{x} \in \mathbb{R}^n$, is $\partial f(\bar{x})$.
151 \mathbb{R}_+^n and \mathbb{R}_-^n are sets of n -dimensional vectors with non-
152 negative and non-positive entries, respectively. e_i is a
153 vector of appropriate size with all zeros except for the i^{th}
154 entry, which is 1. $\mathbb{E}[X_1]$ and $\text{CV}[X_1]$ denote the expecta-
155 tion and coefficient of variation of X_1 , respectively.

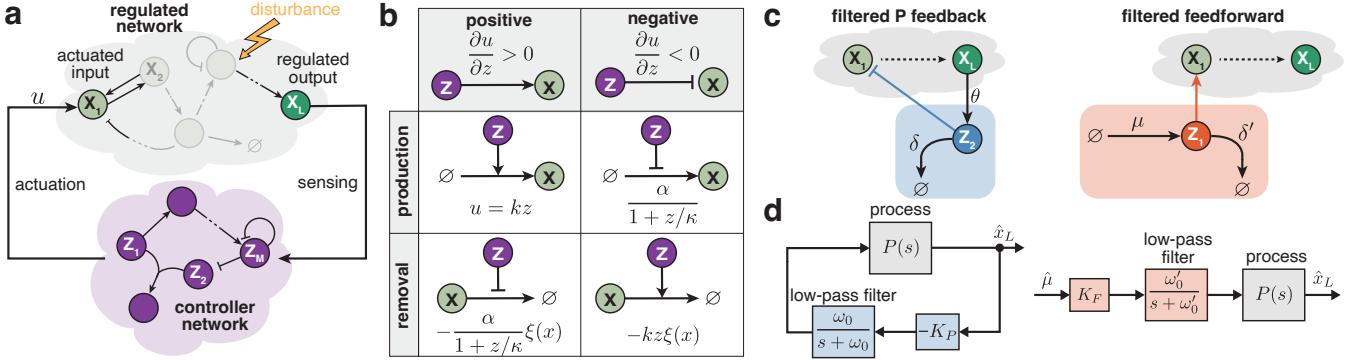


Figure 2: Biomolecular feedback controllers: framework and basic motifs. (a) Closed-loop network: An arbitrary regulated network is in a feedback interconnection with a controller network whose objective is to endow the regulated output of interest X_L with Robust Perfect Adaptation (RPA), high dynamic performance, and reduced cell-to-cell variability. (b) Examples of actuation mechanisms. A single controller species Z actuates X via positive (activating production/blocking removal) or negative (blocking production/activating removal) control, determined by the sign of $\partial u / \partial z$. Examples of the functional forms of u are provided. Note that $\xi(x)$ denotes the functional form of degradation. Extended mechanisms with two control species are in SI Fig. S1. (c) Reaction motifs for elementary biomolecular controllers. Left: An intermediate species Z_2 is produced by the output X_L at a rate θx_L , degrades at a rate δ and closes the loop by negatively actuating the input X_1 . Right: An intermediate species Z_1 is constitutively produced at a rate μ , degrades at a rate δ' and positively actuates the input X_1 . (d) The underlying control architectures of the basic controller motifs. Note that $P(s)$ is the process transfer function. Linear analysis shows direct feedback realizes a proportional controller (see SI Section S1.1) while indirect feedback through Z_2 realizes a low-pass-filtered proportional controller with cutoff frequency ω_0 and gain K_P . In contrast, actuation with Z_1 enables low-pass-filtered feedforward control with gain K_F and cutoff frequency ω'_0 .

155 tion and coefficient of variation of X_1 .

RESULTS

A Framework for Biomolecular Feedback Controllers

158 The closed-loop network in Fig. 2(a) provides a general
159 framework for biomolecular controllers. It consists of a
160 regulated network (the process) with L species: X_1, X_2, \dots, X_L , and a controller network with M species: Z_1, Z_2, \dots, Z_M . The networks interact through (1) a sensing
161 reaction, where the regulated output X_L influences
162 controller species, and (2) an actuation reaction, where
163 controller species influence the actuated input X_1 . The
164 goal is to design a controller network that ensures RPA,
165 maintaining a constant steady-state concentration of X_L
166 despite uncertainties, persistent disturbances, and varying
167 initial conditions. The controller must also provide
168 good dynamic performance and suppress noise.

169 We consider the actuation mechanisms in Fig. 2(b),
170 classified as positive or negative and implemented
171 through production or removal reactions. Positive actua-
172 tion increases production or decreases removal, while
173 negative actuation reduces production or increases re-
174 moval. This is determined by the derivatives of the
175 control action u , defined next. The actuation reactions and
176 their propensities are

$$\begin{cases} \emptyset \longrightarrow X_1 & \text{propensity: } h^+(z) \\ X_1 \longrightarrow \emptyset & \text{propensity: } h^-(z)\xi(x_1), \end{cases} \quad (1)$$

177 where h^\pm define the actuation mechanisms and $\xi(x_1)$
178 represents degradation, e.g. $\xi(x_1) = x_1/(x_1 + \kappa_x)$ for
179 modeling saturation effects. The total control action is

$$u = h(z; x_1) \triangleq h^+(z) - h^-(z)\xi(x_1). \quad (2)$$

182 Examples of u 's functional forms are listed in Fig. 2(b).
183 With this framework, the deterministic dynamics of the

closed-loop network in Fig. 2(a) are

$$\begin{cases} \text{process:} & \dot{x} = f(x) + ue_1; & x_L = e_L^T x \\ \text{controller:} & \dot{z} = g(z, x_L); & u = h(z, x_L; x_1), \end{cases} \quad (3)$$

185 where f, g, h are differentiable functions modeling the
186 regulated network, controller dynamics, and control
187 action, respectively, and $x \triangleq [x_1, \dots, x_L]^T$, $z \triangleq$
188 $[z_1, \dots, z_M]^T$. As such, the feedback control problem re-
189 duces to designing g and h that ensure RPA while achiev-
190 ing high dynamic performance and possibly suppressing
191 noise in the stochastic setting.

Biomolecular Proportional & Feedforward Control

192 Consider the two basic control topologies depicted in
193 Fig. 2(c): filtered proportional (fP) feedback and fil-
194 tered feedforward (fF). Their dynamics are compactly ex-
195 pressed as:

$$\begin{cases} \dot{z}_1 = \mu - \delta' z_1 \\ \dot{z}_2 = \theta x_L - \delta z_2 \\ u = h(z_1, z_2; x_1), \end{cases} \quad \begin{array}{|c|c|} \hline \text{examples of } h & \text{parameters} \\ \hline \frac{\alpha}{1 + (z_2/\kappa)^n} & \mu = \delta' = 0 \\ \hline kz_1 & \theta = \delta = 0 \\ \hline \end{array} \quad (4)$$

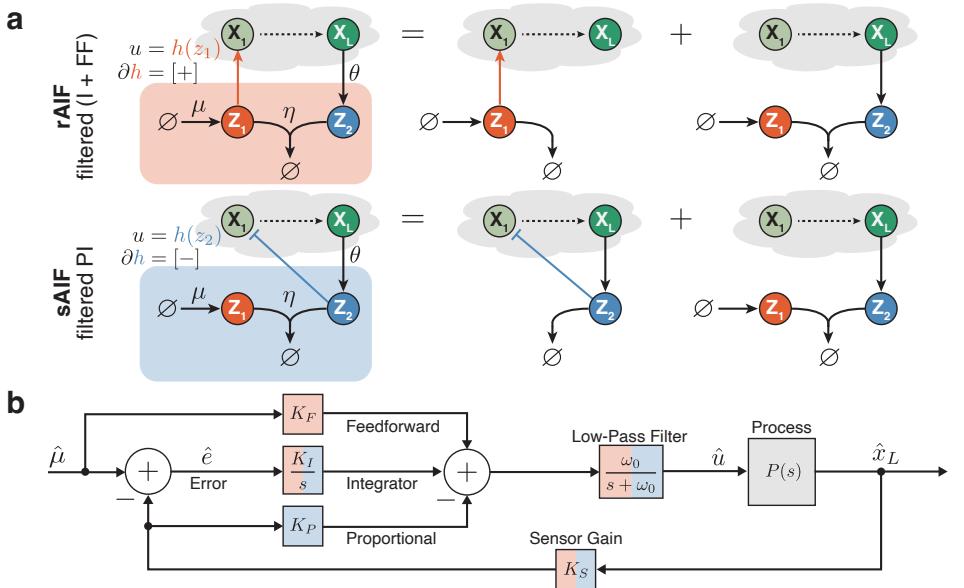
196 A linear perturbation analysis (detailed in SI Sec-
197 tion S1.1) reveals the controller transfer function relating
198 x_L to u as

$$\hat{u}(s) = K_F \frac{\omega'_0}{s + \omega'_0} \hat{\mu}(s) - K_P \frac{\omega_0}{s + \omega_0} \hat{x}_L(s), \quad (5)$$

199 where $K_F \triangleq \frac{\sigma_1}{\delta'}$; $K_P \triangleq \frac{\sigma_2 \theta}{\delta}$; $\omega_0 \triangleq \delta$; $\omega'_0 \triangleq \delta'$,

200 and $\partial h(\bar{z}_1, \bar{z}_2; \bar{x}_1) \triangleq [\sigma_1 \ -\sigma_2 \ \sigma_x]$ with $\sigma_1, \sigma_2 \geq 0$. The
201 transfer function in Equation 5, linking the controller's
202 output to its input in the Laplace domain, allows us to
203 draw the block diagrams depicted in Fig. 2(d) which un-
204 ravel the architectures of the two controllers. The fP

Figure 3: Assembly of biomolecular Proportional-Integral (PI) controllers: integrating a sequestration motif with the basic controller topologies from Fig. 2(c). (a) Different Antithetic Integral Feedback (AIF) reaction motifs. The reference-based AIF (rAIF) controller is obtained by assembling a sequestration motif with the filtered feedforward motif from Fig. 2(c). The sensor-based AIF (sAIF) controller is obtained by assembling a sequestration motif with the filtered P Feedback motif from Fig. 2(c). The key difference lies in the actuation reaction: rAIF uses the reference molecule Z_1 for positive actuation, while sAIF uses the sensor molecule Z_2 for negative actuation. This simple but subtle difference results in entirely distinct control architectures. (b) Underlying control architectures. The block diagram compactly represents the two controllers operating in closed loop, color-coded to match panel (a). The rAIF appends the integrator with a feedforward component with gain K_F , while the sAIF appends it with a proportional component with gain K_P . The resulting PI architecture is thus achieved through a single actuation reaction.



205 controller passes a proportional control action $-K_P \hat{x}_L$ through a low-pass filter, which is realized as a simple
 206 birth-death process via an intermediate species Z_2 between the output X_L and input X_1 . Note that direct neg-
 207 ative actuation of the X_1 by the X_L , without an interme-
 208 diate species, results in a non-filtered proportional con-
 209 troller (see SI Section S1.1), which is more challenging
 210 to implement biologically. Finally, the fF controller has no
 211 feedback from X_L , but it also includes a low-pass filter.
 212

214 Biomolecular Proportional-Integral Control

215 Next, we “append” the basic controller motifs listed in
 216 Fig. 2(c) to the sequestration motif – which lies at the
 217 heart of the AIF controller²⁰ – to obtain the two topolo-
 218 gies in Fig. 3(a). The reference-based (rAIF) and sensor-
 219 based (sAIF) controllers are obtained by appending the
 220 sequestration motif to the filtered feedforward and fil-
 221 tered proportional components from Fig. 2(c), respec-
 222 tively. The dynamics for both controllers can be com-
 223 pactly expressed as

$$\begin{cases} \dot{z}_1 = \mu - \eta z_1 z_2 \\ \dot{z}_2 = \theta x_L - \eta z_1 z_2 \\ u = h(z_1, z_2; x_1), \end{cases} \text{ e.g. } u = \begin{cases} \frac{\alpha}{1 + (z_2/\kappa)^n} & (\text{sAIF}) \\ kz_1 & (\text{rAIF}). \end{cases} \quad (6)$$

224 Equation 6 differs from Equation 4 by replacing simple
 225 removal terms with sequestration terms. This is the key
 226 modification that leads to a robust steady-state output
 227 given by $\bar{x}_L = \mu/\theta$, assuming stability. A linear pertur-
 228 bation analysis (see SI Section S1.2) reveals the con-
 229 trol architectures, summarized in the block diagram in
 230 Fig. 3(b). The rAIF topology implements integral and
 231 feedforward control, both passed through a low-pass
 232 filter, while the sAIF topology realizes a PI controller
 233 passed through a low-pass filter. Note that the propor-
 234 tional component acts on the output rather than the error
 235 signal, consistent with the two degrees of freedom con-
 236 figuration (see¹⁹ Fig. 10.1). While error feedback could
 237 be implemented by adding an additional external actu-

ation of X_1 ³⁵, it is omitted here to reduce the genetic
 238 components required for circuit construction.

240 Filtered PI Coverage

241 To conduct a simulation-free evaluation of the dynamic
 242 capabilities of the various controller topologies, we ex-
 243 amine the achievable ranges of the gains (K_P, K_I) and
 244 the cutoff frequency ω_0 . Specifically, we ask: can these
 245 parameters be tuned to any desired value, and if not,
 246 what ranges are achievable? Of course, a broader
 247 range indicates greater flexibility in shaping the dy-
 248 namic response. To address these questions, we first
 249 establish a bi-directional mapping between biomole-
 250 cular parameters and the gain/cutoff-frequency param-
 251 eters, translating biological constraints (e.g., positivity)
 252 into the gain/cutoff-frequency space to reveal the attain-
 253 able ranges. Here, we present the results for the sAIF
 254 topology, with details in SI Section S2.

255 Consider the sAIF controller in Fig. 3(a). We treat
 256 two biologically-relevant functional forms of h implement-
 257 ing the two negative actuation mechanisms shown in
 258 Fig. 2(b). Specifically, we have $u = h(z_2; x_1)$ with

$$h(z_2; x_1) = \begin{cases} \frac{\alpha}{1 + (z_2/\kappa)^n} & (\text{Repression}) \\ \alpha - \gamma z_2 \xi(x_1) & (\text{Degradation}), \end{cases} \quad (7)$$

259 where $\xi(x_1) = \frac{x_1}{x_1 + \kappa_x}$. As established in SI Section S2,
 260 the achievable gain and cutoff frequency sets for repres-
 261 sion (S_r^n) and degradation (S_d) are

$$\begin{aligned} S_r^n &= \left\{ (K_P, K_I, \omega_0) \in \mathbb{R}_+^3 : K_P < \frac{\bar{u}}{\mu}, K_I < \omega_0 K_P \left(1 - \frac{\mu K_P}{n \bar{u}} \right) \right\} \\ S_d &= \left\{ (K_P, K_I, \omega_0) \in \mathbb{R}_+^3 : K_I < \omega_0 K_P \right\}, \end{aligned} \quad (8)$$

262 where \bar{u} is the supporting input that depends solely on
 263 the desired setpoint and the process (see SI Section S2,
 264 Assumption 1). Observe that for all $n = 1, 2, \dots$, we
 265 have $S_r^n \subset S_r^{n+1} \subset S_d$, and S_r^n converges to S_d as
 266 $n \rightarrow \infty$. Equation 8 indicates that repression constrains

267 the achievable proportional and integral gains K_P and
 268 K_I , but increasing cooperativity n expands the range,
 269 thus offering more flexibility in tuning the filtered PI
 270 parameters. Degradation, by contrast, constrains only the
 271 integral gain K_I . Note that these filtered PI controllers
 272 have more constrained achievable ranges compared to
 273 two-reaction PI controllers^{32,33}, reflecting the trade-off for
 274 embedding proportional and integral feedback in a single
 275 actuation reaction.

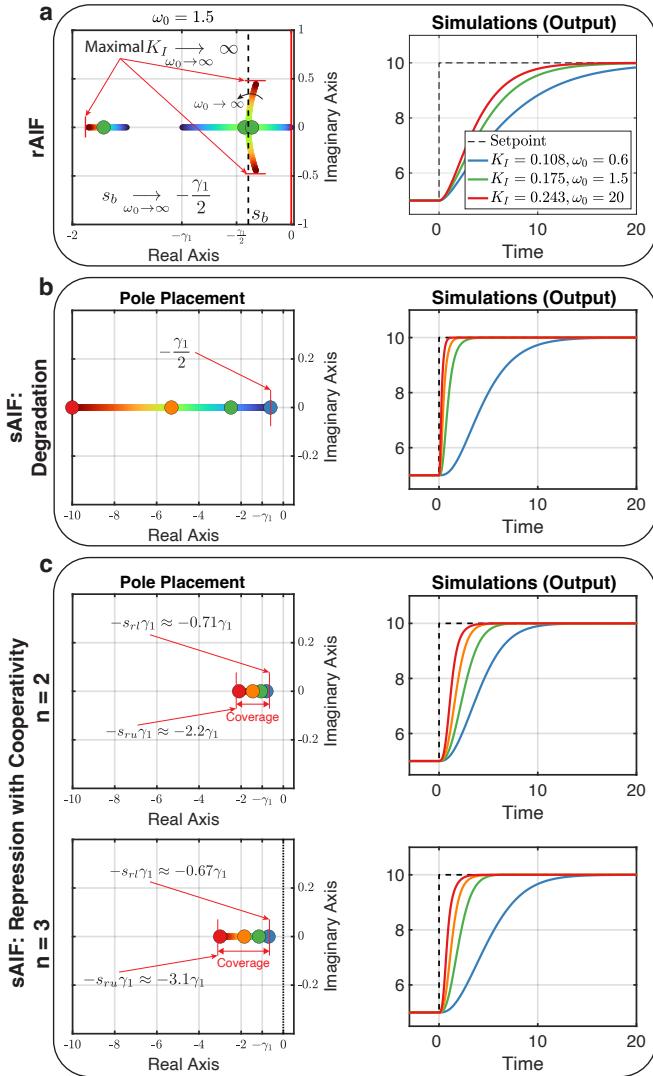


Figure 4: Dynamic Performance Assessment. A birth-death process (see Fig. 5(a), left) is controlled by rAIF and sAIF. (a) rAIF Performance Limitation. The response cannot be sped up beyond a certain threshold without inflicting oscillations. The left plot shows the locus of the eigenvalues as the integral gain K_I is increased while the cutoff frequency ω_0 is fixed. Note that s_b , calculated analytically in Equation S25, denotes the breaking point where two eigenvalues meet on the real axis and break away to become complex conjugates. As ω_0 is increased, one real eigenvalue moves to the left and the breaking point s_b tends to $-\gamma_1/2$. Therefore, the dominant eigenvalue is confined by the breaking point s_b which imposes a limitation on the achievable performance as demonstrated in the simulations. (b) and (c) sAIF Design Flexibility. These two panels show the results of pole-placement where the three closed-loop eigenvalues are placed on the real axis of the left-half plane to ensure a stable and non-oscillating response. Unlike with repression actuation, degradation actuation allows us to place the eigenvalues arbitrarily as far to the left as desired to obtain a step-like response. However, cooperativity helps in mitigating the restriction with repression actuation. The numerical values of the parameters are $\gamma_1 = 1$, $\mu = 5$, $\theta = 1$, $\kappa_1 = 10^{-5}$. To change the setpoint at $t = 0$, μ is doubled. A more detailed version of this figure showing the mappings from the eigenvalues to the gains and biomolecular parameters can be found in SI Fig. S3.

sAIF Controllers Enhance Dynamic Performance

276 Next, we demonstrate, analytically and through sim-
 277 ulations, that sAIF offers more flexibility in shaping
 278 the dynamics compared to rAIF. We also explore the
 279 performance-enhancement capabilities of the two neg-
 280 ative actuation mechanisms. We adopt a root locus
 281 methodology similar to the one used in our previous
 282 work³², where we analyzed other network topologies.
 283

284 Consider the closed-loop dynamics of a simple one-
 285 species birth-death process, i.e. $f(x) \triangleq -\gamma_1 x + u$,
 286 which is sufficient to highlight the proportional com-
 287 ponent's added flexibility. The process transfer function is
 288 $P(s) = \frac{1}{s + \gamma_1}$. Using the block diagram in Fig. 3(b), the
 289 closed-loop transfer function for the linearized dynamics
 290 of rAIF ($K_P = 0, K_F > 0$) and sAIF ($K_P > 0, K_F = 0$) is
 291 calculated as $H(s) \triangleq \frac{\hat{x}_L(s)}{\hat{\mu}(s)}$, with

$$H(s) = \frac{\omega_0(K_F s + K_I)}{s^3 + (\omega_0 + \gamma_1)s^2 + \omega_0(\gamma_1 + K_P K_S)s + \omega_0 K_S K_I}. \quad (9)$$

292 Root-locus analysis (see SI Section S3) shows that for
 293 rAIF, at least one pole cannot be placed left of $s = -\frac{\gamma_1}{2}$,
 294 regardless of how K_I is tuned or how fast the cutoff fre-
 295 quency ω_0 (i.e. sequestration rate η) is. This limits rAIF's
 296 response speed to a threshold dictated by $\frac{\gamma_1}{2}$. This lim-
 297 itation is analytically established in SI Section S3 and
 298 illustrated in Fig. 4(a).

299 This is exactly where the filtered-proportional compo-
 300 nent, enabled by actuation via \mathbf{Z}_2 instead of \mathbf{Z}_1 , adds cru-
 301 cial flexibility. To illustrate this, consider the pole place-
 302 ment design problem: the goal is to select PI gains
 303 (K_P, K_I) and cutoff frequency ω_0 to place the three
 304 closed-loop poles at $s = -a$. For stability, $a > 0$ should
 305 place the poles in the left-half complex plane, on the
 306 real axis to avoid oscillations, and farther left for faster
 307 transient responses. We investigate whether sAIF, with
 308 repression or degradation actuation, can achieve this. If
 309 so, we analyze the achievable pole placement range and
 310 its impact on the dynamics.

311 First, we aim at placing the three closed-loop poles at
 312 the same location $s = -a$. As a result, the characteristic
 313 polynomial is given by

$$p(s) = (s + a)^3 = s^3 + 3as^2 + 3a^2s + a^3. \quad (10)$$

314 Equating $p(s)$ to the denominator of $H(s)$ allows us to
 315 express the designed PI gains (K_P, K_I) and cutoff fre-
 316 quency ω_0 in terms of the birth-death parameter γ_1 , the
 317 sensing gain K_S and the placed pole $-a$ as

$$K_P = \frac{3a^2 - \gamma_1(3a - \gamma_1)}{K_S(3a - \gamma_1)}, \quad K_I = \frac{a^3}{K_S(3a - \gamma_1)}, \quad \omega_0 = 3a - \gamma_1. \quad (11)$$

318 The sets of achievable PI gains and cutoff frequencies in
 319 Equation 8 constrain the achievable poles $s = -a$ to the
 320 following regions on the real axis

$$\begin{aligned} \text{Rep: } (K_P, K_I, \omega_0) \in \mathcal{S}_r^n &\implies s_l(n)\gamma_1 < a < s_u(n)\gamma_1 \\ \text{Deg: } (K_P, K_I, \omega_0) \in \mathcal{S}_d &\implies a > \frac{\gamma_1}{2}, \end{aligned} \quad (12)$$

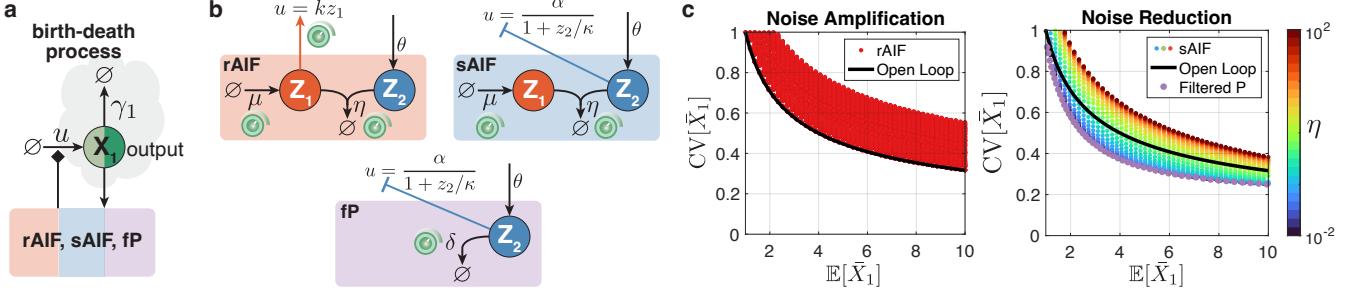


Figure 5: Stochastic noise attenuation capabilities and limitations. (a) We examine a case study for the process to be regulated: a birth-death process. Note that the square shaped arrowhead indicates either activation or repression. Two additional case studies for processes with a higher number of species are shown to exhibit the same conclusions in SI Fig. S5. (b) The process is controlled by three different controllers: rAIF and sAIF, which supplement integral controllers with filtered feedforward and proportional components, respectively, and a fP controller without an integrator. (c) displays the relationship between the coefficients of variation and expectations at stationarity for the regulated output X_1 . The left plot corresponds to rAIF, while the right plot corresponds to sAIF and fP feedback. The key takeaway from these plots is that rAIF can only increase noise compared to the open-loop scenario, while sAIF can attenuate noise to a certain extent, limited by a “hidden” proportional component. The simulations support the notion that integral controllers amplify noise, whereas proportional controllers attenuate it. The solid black lines are calculated analytically using Equation 13, while the various circles are computed empirically through the stochastic simulation algorithm⁴⁶, generating $10^4 - 10^5$ trajectories on the Euler cluster (<https://scicomp.ethz.ch/wiki/Euler>). Numerical values for the birth-death process are: $\gamma_1 = 0.1$. The controller parameter values are as follows: $\alpha = 2$, $\theta = 1$, $\kappa = 0.05$, $\eta \in [10^{-2}, 10^2]$, $k \in [10^{-3}, 1]$, $\delta \in [0.1, 20]$, $\mu \in [1, 10]$.

where $s_l(n)$ and $s_u(n)$ are calculated analytically in SI Section S4. With degradation actuation, there is no theoretical upper limit on pole placement, as shown in Fig. 4(b), where poles can be moved far left to achieve an ideal step-like response. This highlights sAIF’s ability to fully shape the dynamics of a birth-death process, unlike rAIF. In contrast, repression actuation constrains pole placement to the open set $\mathcal{R}(n) = (-s_u(n)\gamma_1, -s_l(n)\gamma_1)$. Without cooperativity ($n = 1$), we have $s_l(1) = s_u(1) = 1$ and thus $\mathcal{R}(1)$ is empty, making it impossible to place poles at the same location. For $n = 2$, $\mathcal{R}(2)$ expands ($s_l(2) \approx 0.7082$, $s_u(2) \approx 2.1769$), showing cooperativity is necessary for single-location pole placement. Higher cooperativity ($n > 2$) further broadens $\mathcal{R}(n)$, as illustrated in Fig. 4(c). Finally, the case where repression is used without cooperativity ($n = 1$) is treated separately in SI Section S4. Here, the poles must be placed at two locations. The transient response speed is shown to be limited by γ_1 , still exceeding the rAIF threshold of $\gamma_1/2$. Additional details are in SI Fig. S3(d). Similar behaviors were observed in the nonlinear stochastic simulations, as shown in SI Fig. S4, which depict the evolution of average concentrations. This is expected, as the pole placement derived from the linearized deterministic models serves as an approximate analysis of the mean dynamics for the stochastic setting under the linear noise approximation.

In conclusion, this case study demonstrates that sAIF outperforms rAIF in dynamic performance. Using degradation for sAIF’s negative actuation allows arbitrary acceleration of the transient response of a birth-death process without overshoots or oscillations. While repression-based actuation also improves performance compared to rAIF, it cannot achieve arbitrary speed. However, this limitation is mitigated by adding cooperativity to the repression. Note that cooperativity does not help pole placement for the rAIF controller because, with $K_P = 0$, only two degrees of freedom (K_I, ω_0) are available to place the three poles of the transfer function in Equation 9. Thus, replacing the actuation $u = kz_1$ with a cooperative Hill function still limits pole placement.

Limits of Intrinsic Stochastic Noise Attenuation

This section examines the intrinsic noise attenuation capabilities of rAIF, sAIF, and fP controllers in the stochastic setting. Noise is defined as the relationship between the coefficient of variation (CV) and the expectation at stationarity⁴². We consider the simple birth-death model of Fig. 5(a) as the process, controlled by the rAIF, sAIF and fP controllers of Fig. 5(b). Two processes with more species are also presented in SI Fig. S5. Throughout the analysis, the process parameter γ_1 is fixed, and negative actuations are implemented as repression reactions. In the open-loop case, the actuation $u = \alpha$ is constant, resulting in a unimolecular network with closed moment equations. The stationary CV of the output is explicitly expressed in terms of the expectation as

$$CV[\bar{X}_L] = \sqrt{\frac{1}{\mathbb{E}[\bar{X}_L]}}. \quad (13)$$

This analytical expression is shown as a solid black curve in Fig. 5(c). Stochastic simulations for the closed-loop scenarios with each controller are carried out to compute stationary expectations and CVs across a range of controller parameters. For rAIF, k , η , and μ are varied with θ fixed. Results, shown as data points in Fig. 5(c) (left), reveal that rAIF increases noise compared to the open-loop case. For sAIF, η and μ are varied while α , κ , and θ remain fixed. The simulation results, color-coded by η , are depicted in Fig. 5(c) (right) and show that sAIF control reduces noise below open-loop levels as demonstrated previously by Kell et al.⁴² through similar simulations and linear noise approximations. We show that this observation generalizes to more complex regulated processes in SI Fig. S5. The key distinction from⁴² is that we uncover the control-theoretic basis for the observed noise attenuation and identify its lower bound, as described next. Comparable simulations for the fP controller are carried out by varying δ with the remaining parameters matched to those of the sAIF controller. The results are shown as purple points in Fig. 5(c) (right). This suggests that the noise attenuation in sAIF control is at

tributable to a “hidden” proportional component, rather than the integrator. In fact, as η increases in sAIF, noise rises, consistent with the proportional gain K_P approaching zero as $\eta \rightarrow \infty$.

Motivated by the outcomes of stochastic simulations, we apply the linear noise approximation (LNA) technique to obtain analytical expressions for the CV in the case of a birth-death process. This analytical exploration is detailed in SI Section S5. Through this analysis, we analytically confirm the relationship observed between the deterministic and stochastic frameworks, demonstrating that noise levels indeed rise with an increase in η , and highlighting that the capacity of the sAIF controller to reduce noise is bounded by its filtered-proportional component, as indicated in Equation S52.

Steady-State Errors in Non-Ideal Settings

In practice, controller species always dilute at some rate δ , as illustrated in Fig. 6(a). It is well-known that this dilution effect introduces a “leaky integrator”, which results in a steady-state error^{20,22,31}. This raises a reasonable question: given that steady-state error is inevitable with dilution, why not simply use a (filtered) proportional controller and avoid the added circuit complexity of incorporating an additional controller species? The following theorem addresses this question by proving that even the non-ideal sAIF controller consistently outperforms the filtered proportional controller in terms of sensitivity to disturbances.

Theorem 1. For any strictly monotonic regulated network under a constant disturbance Δ , operating in negative feedback with either a non-ideal sAIF or filtered proportional (fP) controller, assume identical dilution rate δ and strictly monotonic actuation mechanisms h_s for both controllers (see Fig. 6(a)). At any desired steady-state output $\bar{x}_L = r$, the steady-state sensitivities to the disturbance satisfy

$$\left| \frac{\partial \bar{x}_L}{\partial \Delta} \right|^{sAIF} < \left| \frac{\partial \bar{x}_L}{\partial \Delta} \right|^{fP}.$$

Moreover, if either μ or θ is fixed and the other tuned to maintain $\bar{x}_L = r$, the sensitivity strictly decreases as the sequestration rate η increases.

The proof can be found in SI Section S6.1.1. This result is general and applies to the deterministic setting for any regulated process with a strictly monotonic dose-response. Figure 6(b) illustrates a numerical demonstration, where the regulated process is a simple birth-death process (see Fig. 5(a)). Steady-state outputs are computed for various values of μ , θ , and η (non-ideal sAIF controller) and θ_p (fP controller), both before and after introducing a disturbance. The relative steady-state error, plotted against the output before the disturbance, is consistently lower for the sAIF controller compared to the fP controller. A more detailed plot for the same example can be found in Fig. S6 demonstrating that the lower bound of the error is achieved as $\eta \rightarrow \infty$.

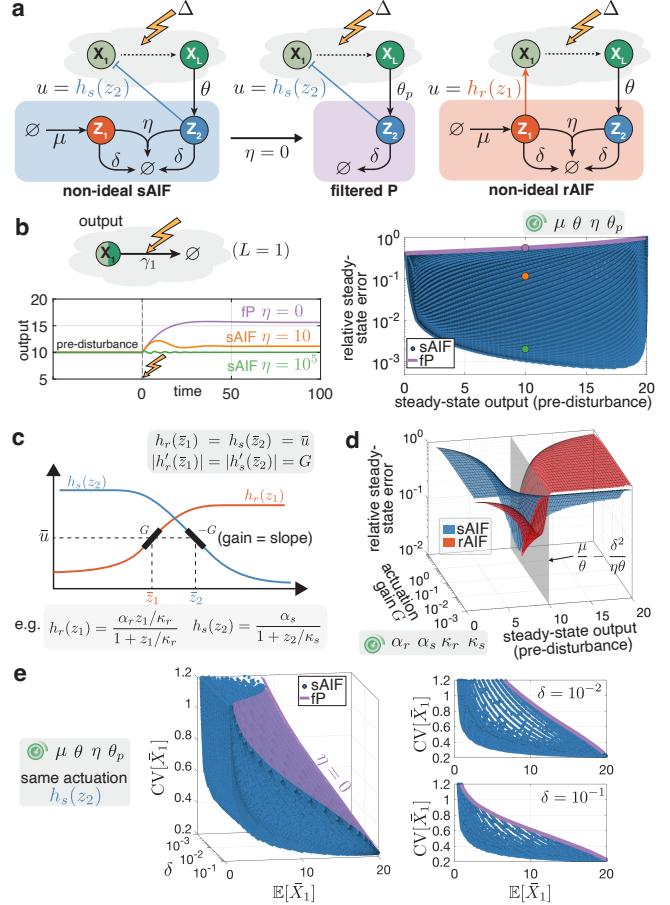


Figure 6: Non-ideal setting. (a) Closed-loop networks with non-ideal sAIF, rAIF, and fP controllers. Here, the fP controller is the same as that in Fig. 5(b), while the non-ideal sAIF and rAIF controllers now include dilution of the controller species at the same rate δ . (b) Numerical demonstration showing the strictly lower steady-state error achieved by the non-ideal sAIF compared to the fP controller. The regulated network is a simple birth-death process with a disturbance affecting the degradation rate. Parameters μ , θ , η , and θ_p are varied to plot the relative steady-state error against the output before disturbance. The bottom plot shows time responses for three cases, illustrating reduced error as η increases. More details including the numerical values can be found in SI Fig. S6. (c) Actuation functions for sAIF and rAIF controllers, ensuring fair comparison by matching the function values and their derivative magnitudes (gain G). (d) Numerical comparison of steady-state errors for non-ideal sAIF and rAIF controllers, using the same regulated network and disturbance as in panel (b). Parameters α_r , α_s , κ_r , and κ_s are varied to plot the relative steady-state error against actuation gain and pre-disturbance output. The results show a performance switch as \bar{x}_L crosses the threshold defined in Theorem 2. (e) Comparison of noise between the non-ideal sAIF and fP controller. Both controllers share the same actuation function h_s , with μ , θ , η , δ , and θ_p varied while other parameters remain fixed. Stochastic simulations are conducted to empirically plot, in 3D, the stationary CVs against the stationary expectation and dilution rate δ . For clarity, two slices are shown for $\delta \in \{10^{-2}, 10^{-1}\}$. The results demonstrate that, in practical settings where the repressor and dilution rate are identical for both controllers, the non-ideal sAIF consistently performs as well as or better than the fP controller. Numerical values can be found in SI Fig. S8.

We now present a theorem comparing the steady-state sensitivities of the non-ideal sAIF and rAIF controllers.

Theorem 2. For any strictly monotonic regulated network under a constant disturbance Δ , operating in negative feedback with either a non-ideal sAIF or rAIF controller, assume identical controller parameters μ, θ, η , and δ for both controllers (see Fig. 6(a)). At any fixed desired steady-state output \bar{x}_L , the steady-state sensi-

461 tivities to the disturbance satisfy:

$$\begin{cases} \left| \frac{\partial \bar{x}_L}{\partial \Delta} \right|^{sAIF} < \left| \frac{\partial \bar{x}_L}{\partial \Delta} \right|^{rAIF} & \text{if } \bar{x}_L > \frac{\mu}{\theta} - \frac{\delta^2}{\eta\theta}, \\ \left| \frac{\partial \bar{x}_L}{\partial \Delta} \right|^{sAIF} > \left| \frac{\partial \bar{x}_L}{\partial \Delta} \right|^{rAIF} & \text{if } \bar{x}_L < \frac{\mu}{\theta} - \frac{\delta^2}{\eta\theta}, \end{cases}$$

462 assuming the absolute value of the actuation gains of
463 both controllers are matched (see Fig. 6(c)).

464 The proof can be found in SI Section S6.1.2. This re-
465 sult provides a complete characterization of when the
466 non-ideal sAIF and rAIF controllers outperform each
467 other in terms of steady-state sensitivities to dis-
468 turbances. Notably, the condition is straightforward, de-
469 pending solely on the desired steady-state level \bar{x}_L and
470 the controller parameters μ , θ , and δ , without relying
471 on the specifics of the regulated process. Figure 6(d)
472 presents a numerical demonstration of relative steady-
473 state error across a range of actuation gains and pre-
474 disturbance outputs. The results clearly show that for a
475 desired setpoint below $\mu/\theta - \delta^2/\eta\theta$, the non-ideal rAIF
476 controller achieves lower error, while the non-ideal sAIF
477 outperforms it above this threshold.

478 We conclude this section by analyzing the trade-off
479 between dynamic performance and steady-state error in
480 the non-ideal setting. A comprehensive simulation study
481 was performed, scanning all controller parameters for
482 both sAIF and rAIF designs to jointly evaluate steady-
483 state error and settling time. As shown in SI Fig.S7,
484 the sAIF controller achieves faster settling times without
485 sacrificing steady-state accuracy. As predicted by The-
486 orem 2, the rAIF can yield slightly lower steady-state error
487 at low setpoints, but only at the cost of longer settling
488 times—highlighting the trade-off. The improved per-
489 formance of sAIF is, once again, attributed to its propor-
490 tional component, which offers an extra degree of control
491 and helps relax this trade-off.

492 Intrinsic Noise in Non-Ideal Settings

493 Simulation studies in Fig. 5 and SI Fig. S8, supported by
494 theoretical analysis, show that for a given setpoint, tun-
495 ing the degradation rate δ of \mathbf{Z}_2 in the fP controller can
496 achieve the lowest stationary CV compared to the sAIF
497 controller for a fixed θ . However, in practice, tuning the
498 degradation rate may be difficult, while tuning θ is easier
499 (as done experimentally in Fig. 7). Furthermore, dilution
500 affects both controllers similarly. To this end, we now ex-
501 amine the stochastic setting of the fP and non-ideal sAIF
502 controllers in Fig. 6(a), where the expressed repressor
503 \mathbf{Z}_2 is identical for both controllers. This practical scenario
504 focuses on the design question: given a shared repre-
505 sor which dilutes at a rate δ , is it better to reduce noise
506 with or without sequestration?

507 The simulation study in Fig. 6(e) demonstrates that in
508 this practical scenario, the non-ideal sAIF controller con-
509 sistently performs as well as or better than the fP con-
510 troller in reducing stationary noise. Using the same reg-
511 ulated network as in Fig. 6(b), we vary μ , θ , and η for
512 the non-ideal sAIF controller and θ_p for the fP controller

513 across different values of δ . The CV and expectation
514 are computed and plotted in 3D, along with slices for
515 $\delta \in \{10^{-2}, 10^{-1}\}$. The results clearly show that for any
516 $\mathbb{E}[\bar{X}_1]$ and δ , $\text{CV}[\bar{X}_1]^{sAIF} \leq \text{CV}[\bar{X}_1]^{fP}$. This conclusion
517 holds also for more complicated regulated networks as
518 demonstrated in the numerical simulations of SI Fig. S8.

519 Motivated by the outcomes of our stochastic simu-
520 lations, we once again apply the LNA technique to obtain
521 analytical expressions for the CV in the case of a birth-
522 death process as detailed in SI Section S6.2. Through
523 this analysis, we obtain that for a fixed desired setpoint
524 $\mathbb{E}[\bar{X}_1] = r$, we have $\frac{\partial \text{CV}[\bar{X}]}{\partial \eta} \Big|_{\eta=0} < 0$. This aligns with
525 the simulation results, showing that as we transition from
526 the filtered P controller ($\eta = 0$) to the non-ideal sAIF con-
527 troller ($\eta > 0$) at the same setpoint, the CV decreases.

528 Genetic Implementation

529 In this section, we build and test the sAIF and filtered
530 proportional controllers in *E. coli*. To do so, we leverage
531 the flexibility offered by inteins in building genetic control
532 systems²⁶.

533 The genetic circuits used in the experiments are
534 shown in Fig. 7(a). Each circuit consists of three genes
535 distributed across three plasmids: Genes 1 and 2 form
536 the controller components, while Gene 3 represents the
537 regulated process. For clarity, dummy plasmids—used
538 to ensure similar plasmid burden across circuits but
539 which do not influence the regulated output—are not
540 shown in Fig. 7(a), but are fully detailed in SI Fig.S9(a).
541 The configuration of Genes 1 and 2 determines the
542 type of controller: three open-loop circuits are shown on
543 the left, filtered-proportional control in the center, and
544 sAIF control on the right. These circuits were care-
545 fully designed to minimize differences in genetic com-
546 ponents across configurations, enabling a fair compari-
547 son—particularly in relation to extrinsic noise, which is
548 not accounted for in the theoretical analysis. A more
549 detailed discussion of extrinsic noise is provided in the
550 following section.

551 We begin by introducing the open-loop systems which
552 are available in three configurations. Open Loop 1 (OL 1)
553 serves as the minimal non-actuated configuration. Gene
554 3—encoding the *E. coli* transcription factor AraC fused
555 to the red fluorescent protein mScarlet-I (denoted as
556 the regulated output \mathbf{X}_1)—is driven by a constitutive pro-
557 moter, with no interaction from controller components.
558 Open Loop 2 (OL 2) introduces the actuator \mathbf{Z}_2 , encoded
559 by Gene 2, which resides on plasmid 2. This gene is
560 driven by a constitutive promoter and encodes a Tetracy-
561 cline Repressor (TetR) protein with a split intein Int^C in-
562 serted into its dimerization domain. Gene 3 is driven by
563 the P_{TET} promoter, which is repressed by TetR and can
564 be chemically induced using anhydrotetracycline (aTc).
565 Open Loop 3 (OL 3) builds on OL 2 by introducing Gene
566 1 on plasmid 1, which encodes a different split intein,
567 Int^N . This enables intein-splicing between \mathbf{Z}_1 (Int^N) and
568 \mathbf{Z}_2 (Int^C), thereby sequestering TetR’s repressive func-
569 tion and modulating the regulation of \mathbf{X}_1 . Like OL 2,

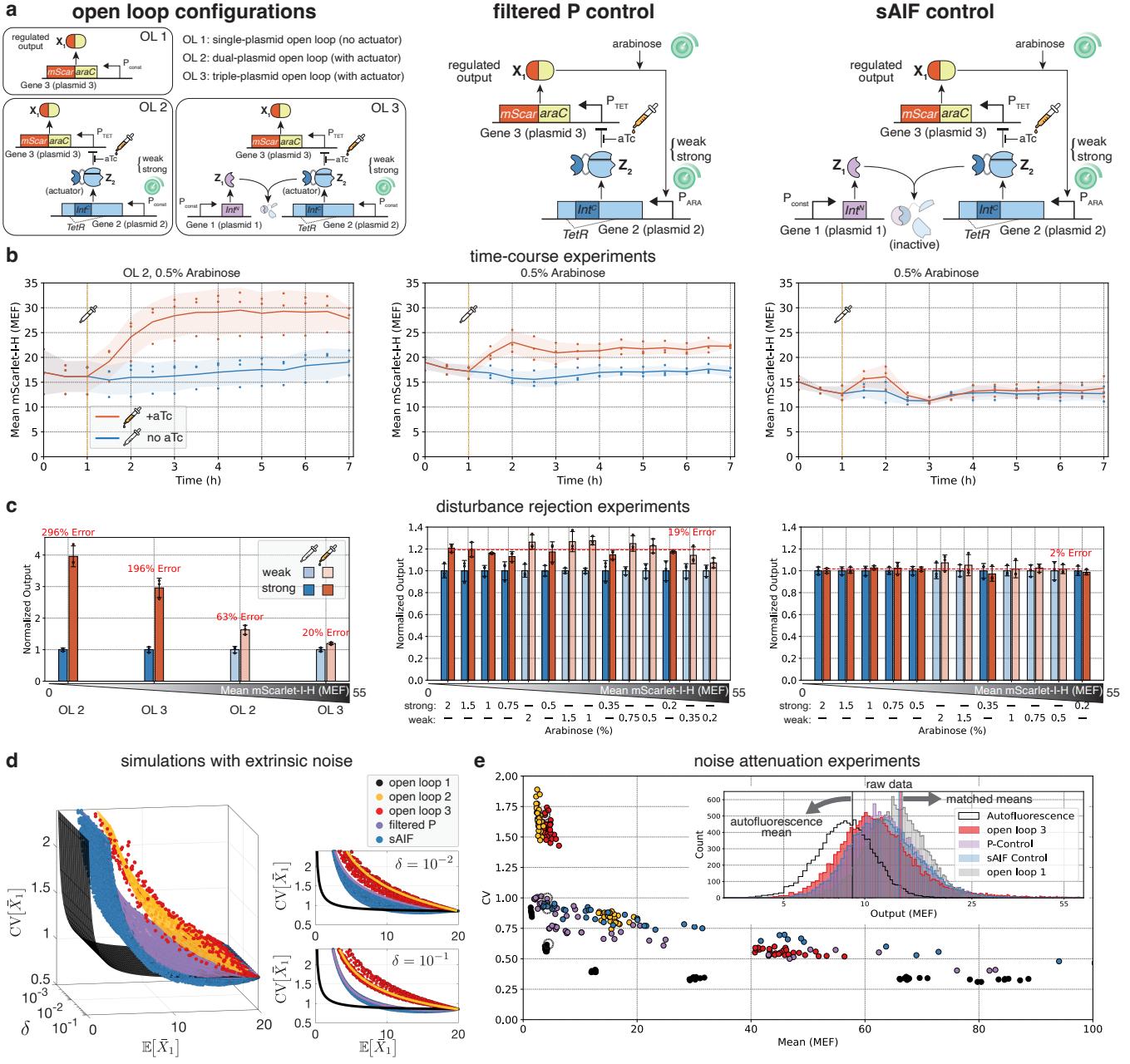


Figure 7: Genetic implementation and experimental validation of intein-based feedback controllers in *Escherichia coli*. (a) Schematic diagrams of three Open Loop configurations, Filtered Proportional (fP) Control, and sensor-based Antithetic Integral Feedback (sAIF) Control circuits. The controllers consist of Gene 1 and Gene 2, which actuate the regulated process, represented by Gene 3, via the TetR protein which represses the P_{TET} promoter. Gene 3 expresses the output of interest represented by AraC fused to mScarlet-I, serving as a fluorescent reporter. Each gene is cloned on a separate plasmid. Note that anhydrotetracycline (aTc) serves as an external perturbation in these experiments. (b) Time-course experiments displaying the dynamic response of the output to a disturbance induced by aTc at 1 hour, with 0.5% arabinose present to enable feedback in closed-loop configurations. The blue and red curves represent the mean response of three biological replicates (depicted by the colored dots at 30-minute intervals) for undisturbed and disturbed conditions, respectively. The shaded areas around the curves indicate the standard deviation from the mean of these triplicates. It is important to note that the different configurations were deliberately chosen to ensure that the undisturbed responses would have similar levels, all measured in Molecules of Equivalent Fluorochrome (MEF) units^{47,48}. See SI Fig. S10 for more comparisons at different steady-state levels. All circuits are observed to reach a steady state, with the sAIF controller demonstrating an exceptionally small steady-state error and exhibiting favorable dynamic behavior. (c) Bar graphs showing disturbance rejection capabilities of each circuit, across a wide range of setpoints, with the steady-state output levels normalized to the steady-state undisturbed levels and indicated by different arabinose concentrations. Output levels, based on three biological replicate measurements, are ordered by increasing mean values. The color shade of the bars (light/dark) indicates the expression strength of Gene 2 (weak/strong). Error bars reflect the standard deviations from the triplicate data. The displayed results demonstrate the varied responses to disturbance: significant deviations in open-loop circuits, a moderate reduction in the disturbance effect with the fP controller, and a near-complete eradication of disturbance in the sAIF controller circuit. The non-normalized data can be found in SI Fig. S11. (d) Simulation results incorporating both intrinsic and extrinsic noise. This panel parallels Fig. 6(e), now including extrinsic noise from plasmid copy number variability. Results for the sAIF and fP controllers are shown alongside the three open-loop configurations. See SI Fig. S9 for more details. (e) Noise properties in an sAIF controller: The histograms in the inset display raw data for both the autofluorescence of cells and the output fluorescence for one instance of each closed-loop circuit and two open loop configurations, pointed out with dashed circles, all with matched means. Using tools developed in^{47,48}, the undisturbed steady-state data from our circuits, shown in panel (c), as well as undisturbed OL 1 data, have been processed to remove debris, autofluorescence and outliers (see Methods). This leads to the scatter plot, which correlates the mean output expression level with the coefficient of variation (CV) to compare the noise properties of the different control circuits. Three biological replicates are plotted, each circle representing one biological replicate.

570 Gene 3 is driven by the P_{TET} promoter and responds 572 driving Gene 2 is varied between weak and strong 571 to aTc induction. In both OL 2 and OL 3, the promoter 573 expressions, enabling tunable output levels. Note that OL 2

with a strong promoter yields the lowest \mathbf{X}_1 expression due to stronger repression, while OL 3 with a weak promoter achieves the highest expression—benefiting from both reduced repression and active sequestration. In all open-loop configurations, there is no feedback from \mathbf{X}_1 to the controller. The inducer aTc is reserved in these experiments for introducing external disturbances to assess the disturbance rejection capabilities of the various control architectures.

Next, we introduce the filtered-proportional controller circuit, a design that is essentially achieved by a slight modification of the OL 2 configuration. The key adjustment involves substituting the constitutive promoter that drives Gene 2 with the P_{ARA} promoter. This promoter is activated by the AraC protein and can be induced by arabinose. This slight alteration establishes a feedback mechanism by incorporating a sensing reaction which monitors the level of the regulated output \mathbf{X}_1 and provides a negative feedback response. Note that arabinose is reserved for tuning the setpoint (steady-state level of the regulated output \mathbf{X}_1)—more arabinose yields a lower setpoint, since arabinose plays a role similar to θ in Fig. 2(c). Similar to the setup in the open-loop configurations, the expression strength of Gene 2 is available in two levels: strong and weak. However, in contrast to the open-loop configuration, here, the variation in expression strength is achieved via ribozymes (see Methods). Finally, we present the sAIF controller circuit. This design is, once again, derived from a minor, but essential, modification to the filtered-proportional controller circuit. This primary change introduces Gene 1, as in OL 3, thus enabling the intein splicing reaction in the feedback loop which lies at the heart of the sAIF topology depicted in Fig. 3(a).

We close this section by pointing out that we did not construct an intein-based rAIF controller for direct comparison in this study. Experimental comparison between rAIF and sAIF circuits is nontrivial, as they rely on different actuator parts. In contrast, the sAIF and filtered proportional controllers share the same actuator, allowing for a more direct comparison.

the open-loop setup, though it still exhibited a residual steady-state error. The sAIF controller circuit, however, was notably successful in almost completely rejecting the disturbance, thereby achieving RPA. Indeed, the responses with and without disturbance settle to levels indistinguishable within the precision of triplicate measurements.

To further explore disturbance rejection across various setpoints, we introduced a range of arabinose concentrations (ranging from 0.2 – 2%) and recorded the steady-state output levels with and without the aTc disturbance. These findings, depicted in the bar graphs of Fig. 7(c), are normalized to their respective undisturbed states and are organized by ascending output levels on the x-axis. Unnormalized plots are provided in SI Fig. S11. The results reinforced our expectations: the open-loop circuits failed to counteract the disturbance, showing large steady-state errors. In contrast, the filtered-proportional controller reduced the disturbance's impact to an average steady-state error of 19%, and the sAIF controller excelled by nearly eradicating the disturbance, leading to a minimal steady-state error of just 2%. This insignificant steady-state error is within the error bars of the biological triplicates. Interestingly, the impact of the aTc disturbance was more pronounced at lower setpoints (which correspond to higher arabinose levels), suggesting a diminished sensitivity to this disturbance at lower TetR concentrations.

Next, we examine the experimental noise properties of the various built circuits. However, the experimental setup cannot be directly compared to the theoretical analysis in Fig. 6(e), as the experiments include both intrinsic and extrinsic noise, whereas the theoretical analysis considers only intrinsic noise. As such, we performed additional simulations incorporating extrinsic noise, specifically due to variability in plasmid copy numbers, using data from⁴⁹ that match the plasmid origins of replication we use. Since circuits with more plasmids introduce more extrinsic noise, this factor is critical for a fair comparison. We simulated and experimentally measured all the circuits in Fig. 7(a). Simulation details, combining both intrinsic and extrinsic noise, are provided in SI Fig. S9 and the results are summarized in Fig. 7(d), where the CV is plotted against the mean and the dilution rate δ as in Fig. 6(e). With both intrinsic and extrinsic noise present, sAIF does not reduce noise relative to OL 1 (no actuator). This contrasts with the idealized intrinsic-only setting (Fig. 5), where sAIF can attenuate noise relative to OL1. When extrinsic noise is included, simulations show at most a very narrow, marginal attenuation window—too small to be reliably observed experimentally. This limitation arises because it is designed to involve three different plasmids compared to only one plasmid in the OL 1 configuration, amplifying extrinsic variability. However, when compared to OL 2—which uses only one additional plasmid to house the actuator gene expressing \mathbf{Z}_2 —the sAIF and filtered proportional controllers do reduce total noise. This indicates that, despite housing the genes on more plasmids yielding higher extrinsic noise, the sAIF controller remains

615

Experimental Assessment of the Genetic Controllers

After constructing the genetic circuits, we evaluated their performance, focusing on their temporal response, their ability to reject disturbances and their noise properties. Fig. 7(b) shows the results of time-course experiments that examined the transient responses of the circuits to the addition of 0.5 ng/mL of aTc as an external disturbance at time $t = 1$ h. In the experiments involving closed-loop configurations, 0.5% arabinose was introduced to activate the sensing mechanisms and to adjust the setpoint to levels comparable to those observed in the open-loop configuration. It was observed that all circuits reached a steady state within a 6-hour period. As expected, the open-loop circuits demonstrated a significant deviation from its undisturbed state. The filtered-proportional controller circuit was more effective in mitigating the disturbance impact compared to

616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638

639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691

692 effective at attenuating noise relative to more comparable
693 open-loop designs (OL 2 and 3). The OL 2 scenario
694 is particularly relevant in practice, as regulating the process
695 through an external actuator component (e.g. trans-
696 cription factor or chemical inducer) is often necessary
697 and offers greater flexibility in both design and tuning,
698 compared to modifying the promoter that directly drives
699 the process. The corresponding experimental results are
700 presented in Fig. 7(e). Note that the histograms shown
701 in the inset display the distributions for a single instance
702 of each circuit from the scatter plot pointed out in dashed
703 circles, prior to the processing that removes autofluores-
704 cence and outliers. This analysis demonstrated that the
705 sAIF controller not only ensures RPA but also decreases
706 noise levels below those found in the open-loop config-
707 uration with comparable number of plasmids, i.e. OL 2
708 and 3, particularly at lower setpoints. Additionally, the
709 data reveal that the noise-reducing capability of the sAIF
710 controller in this example is comparable to that of the
711 filtered-proportional controller.

712 Lastly, in SI Fig. S12, we include previously published
713 data from Aoki et al.²², in which an rAIF controller was
714 implemented in *E. coli* using Sigma/anti-Sigma seque-
715 stration and successfully achieved RPA at the population
716 level. However, unlike the sAIF controller, the rAIF re-
717 sulted in a more than fourfold increase in CV relative to
718 its open-loop counterpart. It is important to note that this
719 open-loop circuit also included the controller gene (sim-
720 ilar to OL 2), meaning the comparison was not made
721 against a minimal open-loop system without actuator
722 species (i.e. OL 1). Additionally, due to significant dif-
723 ferences in experimental setups and genetic parts, our
724 experiment does not attempt a direct comparison be-
725 tween rAIF and sAIF noise levels. Rather, both stud-
726 ies perform relative comparisons within their respective
727 contexts. In our case, the sAIF controller reduces noise
728 at low expression level where noise is prominent com-
729 pared to its corresponding actuated open-loop config-
730 urations (OL 2 and OL 3 in Fig. 7(a)) - a feature that the
731 rAIF controller in²² did not achieve. However, in this work
732 we have not disentangled topology from part-specific ef-
733 fects. Staging a fair comparison between sAIF and rAIF
734 that takes into account the different parts (such as split
735 inteins and sigma/anti-sigma pairs) and their associated
736 extrinsic noise remains an important future direction.

737 Discussion

738 Achieving homeostasis is crucial in regulating cellular
739 processes in living cells, which are inherently noisy and
740 uncertain. While RPA is an important property that en-
741 dows the system with homeostasis, it is often not suffi-
742 cient for achieving high dynamic performance. Further-
743 more, achieving RPA at the population level may come at
744 the cost of high cell-to-cell variability²⁰ or elevated ener-
745 getic burden⁴². Therefore, it is vital to develop biomole-
746 cular controllers that can deliver both RPA and high per-
747 formance, taking into account the inherent variability of
748 living cells. While integral controllers are usually the

749 suitable choice to achieve RPA at the population level,
750 proportional controllers are often added on top of the
751 integrators to enhance the dynamic performance and
752 reduce noise or cell-to-cell variability^{32,34}. In previous
753 works, such addition was realized by adding extra cir-
754 cuity which could be biologically demanding, although
755 unavoidable in certain scenarios. In this paper, we have
756 shown that a slight variant of the standard rAIF controller
757 (see the sAIF topology in Fig. 3(a)) gives rise to a (fil-
758 tered) PI controller without adding the extra circuitry. We
759 also demonstrated analytically and through simulations
760 that this variant indeed brings in the benefits of the pro-
761 portional controller while maintaining the RPA property
762 offered by the integrator.

763 The sAIF controller was first introduced in²⁰ Fig. S1
764 as one of several realizations of AIF control. More re-
765 cently, a stochastic analysis employing linear noise ap-
766 proximation was conducted in⁴² to show that this variant
767 is capable of reducing noise when controlling a birth-
768 death process. Our study reveals that it is precisely
769 the “hidden” proportional component which is responsi-
770 ble for this noise reduction, and not the integrator. This
771 is demonstrated in Fig. 5 when regulating not only a
772 birth-death process but also a gene expression process
773 with and without protein maturation (see SI Fig. S5).
774 We also demonstrate analytically and through simula-
775 tions that the “hidden” proportional component not only
776 reduces noise, but also enhances the dynamic perfor-
777 mance. Interestingly, this seemingly minor, but subtle,
778 alteration in the choice of the actuating species yields a
779 different controller architecture which tangibly offers bet-
780 ter responses. The intuition behind this improvement lies
781 in the fact that the altered choice of actuating species
782 cascades both a filtered proportional controller and an
783 integral controller, resulting in the best of both worlds.
784 This finding has practical implications as it offers a mini-
785 mal design for biomolecular PI controllers which is easier
786 to build. Furthermore, this minimal design serves as a
787 fundamental principle for constructing negative feedback
788 controllers using a given repressor. As demonstrated
789 in Theorem 1 and supported by theoretical and compu-
790 tational analysis, incorporating sequestration alongside
791 the repressor consistently improves adaptation compro-
792 mising noise attenuation compared to using the repre-
793 sor alone.

794 Leveraging the simple design, we have genetically
795 engineered the sAIF controller in *E. coli* using
796 inteins. We used our previously reported TetR-IntC(Gp41-
797 1)/IntN(Gp41-1) pair²⁶ for all gene circuits, with no de-
798 tectable off-target activity. Although we did not perform
799 an extensive characterization of Gp41-1 in this study, this
800 is a widely used and characterized split intein, due to
801 its small size, rapid splicing kinetics, and reliable per-
802 formance⁵⁰⁻⁵⁴. As an added benefit, Gp41-1 is part of
803 a library of orthogonal split inteins validated *in vivo* in
804 *E. coli*⁵³, supporting its potential for multiplexing, scale
805 up, and incorporation into more complex circuits. Our
806 experimental results successfully demonstrated the con-
807 troller’s capabilities in achieving RPA, favorable transient
808 dynamics and noise reduction. Indeed, our experimen-

809 tal findings confirm that the sAIF controller is capable
810 of reducing the noise levels below those observed in a
811 parts-matched open-loop configuration where the net-
812 work is regulated by an actuator. The reduction is clearly
813 observed experimentally at low expression levels where
814 noise is prominent.

815 Although the previously tested rAIF controller²² is not
816 directly comparable to our sAIF controller due to differ-
817 ences in biological parts, it is worth noting that it exhib-
818 ited a more than four-fold increase in noise relative to its
819 own open-loop configuration, which also involved regu-
820 lation by an actuator species. While not directly compa-
821 rable, the results are nonetheless informative in assess-
822 ing the potential of the sAIF architecture. A direct com-
823 parison between rAIF and sAIF using matched biological
824 parts remains an important direction for future work.

825 Our theoretical analysis focused on intrinsic noise,
826 which, while present in our experimental data, is inter-
827 twined with extrinsic noise arising from our multi-plasmid
828 design. To account for this additional noise source, we
829 conducted a comprehensive simulation study incorpor-
830 ating intrinsic and extrinsic noise in the form of plasmid
831 copy-number variability (see Fig. 7(d)). The experimental
832 results show that at low expression levels—where noise
833 is most pronounced—the sAIF controller exhibits lower
834 total noise than open-loop circuits that include the actua-
835 tor (OL2 and OL3), consistent with the simulation re-
836 sults. Two key future directions emerge from this work:
837 (1) designing circuits with measurement modalities capa-
838 ble of disentangling intrinsic and extrinsic noise to study
839 them separately, and (2) embedding controller genes on
840 the same plasmid to reduce variability from plasmid copy
841 number—while carefully avoiding gene interference.

842 Our theoretical analysis has demonstrated that the
843 choice of actuation mechanisms plays a critical role in fa-
844 cilitating these enhancements. Specifically, degradation-
845 based actuation mechanisms exhibited the best perfor-
846 mance in shaping the transient dynamics. Although our
847 genetic implementation, which utilizes TetR as a repres-
848 sor for actuation, has already shown significant improve-
849 ments, we anticipate that alternative designs incorpo-
850 rating degradation could unlock even greater enhance-
851 ments. Exploring these possibilities remains an avenue
852 for future research. Additionally, future work involves
853 testing our controllers in more complex regulatory sys-
854 tems, where unintended interactions and cellular bur-
855 den may become significant. Although we observed no
856 significant signs of cellular burden—evidenced by the
857 monotonic steady-state responses in SI Fig. S11 and
858 unchanged cell densities indicating no impact on growth
859 rate—burden may still arise when regulating more com-
860 plex networks. It would also be valuable to experimen-
861 tally investigate the effects of severe disturbances that
862 could induce integral windup, and to build genetic cir-
863 cuits capable of preventing or mitigating such effects, as
864 proposed in⁴¹.

865 The first genetically engineered PI controllers in mam-
866 malian cells, utilizing sense/anti-sense RNAs, was re-
867 ported by Frei et al.²⁷. Our work introduces the first
868 successful implementation of a PI controller in bacteria,

869 marking a significant milestone. Unlike the previous ap-
870 proach that relied on a proxy for the output molecules to
871 implement proportional control, our sAIF controller em-
872 ploys a minimal design. This design enables the re-
873 alization of both proportional and integral components
874 through a single actuation reaction, thus avoiding the
875 need for additional genetic parts or proxies.

876 Our implementation in bacteria underscores the versa-
877 tility of inteins as a genetic tool applicable across diverse
878 life forms. In fact, the simplicity in the design, coupled
879 with the exquisite role of inteins in bridging theoretical
880 constructs and practical implementations, sets the stage
881 for the promising deployment of such controllers across
882 diverse domains intersecting with synthetic biology. This
883 holds the potential for significant advancements in sec-
884 tors where precise and swift biomolecular regulation is
885 essential, including biotechnology, metabolic engineer-
886 ing, and cell therapy, among others.

ACKNOWLEDGMENTS

887 This research was funded in whole or in part by the Swiss
888 National Science Foundation (SNSF) grant no. 216505.

DECLARATION OF INTERESTS

890 The authors declare no competing interests.

References

1. Yi, T.M., Huang, Y., Simon, M.I., and Doyle, J. (2000). Robust perfect adaptation in bacterial chemotaxis through integral feedback control. *Proceedings of the National Academy of Sciences* **97**, 4649–4653.
2. Muzzey, D., Gómez-Uribe, C.A., Mettetal, J.T., and van Oudenaarden, A. (2009). A systems-level analysis of perfect adaptation in yeast osmoregulation. *Cell* **138**, 160–171.
3. El-Samad, H., Goff, J., and Khammash, M. (2002). Calcium homeostasis and parturient hypocalcemia: an integral feedback perspective. *Journal of theoretical biology* **214**, 17–29.
4. Turrigiano, G. (2007). Homeostatic signaling: the positive side of negative feedback. *Current opinion in neurobiology* **17**, 318–324.
5. Benner, S.A., and Sismour, A.M. (2005). Synthetic biology. *Nature reviews genetics* **6**, 533–543.
6. Filo, M., Chang, C.H., and Khammash, M. (2023). Biomolecular feedback controllers: from theory to applications. *Current Opinion in Biotechnology* **79**, 102882.
7. Barajas, C., and Del Vecchio, D. (2022). Synthetic biology by controller design. *Current Opinion in Biotechnology* **78**, 102837.

918 8. Del Vecchio, D., Dy, A.J., and Qian, Y. (2016). Control 919 theory meets synthetic biology. *Journal of The 920 Royal Society Interface* 13, 20160380. 921

922 9. Hsiao, V., Swaminathan, A., and Murray, R.M. 923 (2018). Control theory for synthetic biology: recent 924 advances in system characterization, control 925 design, and controller implementation for synthetic 926 biology. *IEEE Control Systems Magazine* 38, 32–62. 927

928 10. Prescott, T.P., and Papachristodoulou, A. (2014). 929 Synthetic biology: A control engineering perspective. In 930 2014 European Control Conference (ECC). 931 IEEE pp. 1182–1186. 932

933 11. Perrino, G., Hadjimitsis, A., Ledesma-Amaro, R., 934 and Stan, G.B. (2021). Control engineering and 935 synthetic biology: working in synergy for the 936 analysis and control of microbial systems. *Current Opinion 937 in Microbiology* 62, 68–75. 938

939 12. Ruolo, I., Napolitano, S., Salzano, D., di Bernardo, 940 M., and di Bernardo, D. (2021). Control engineering 941 meets synthetic biology: Foundations and 942 applications. *Current Opinion in Systems Biology* 28, 943 100397. 944

945 13. Khammash, M.H. (2022). Cybergenetics: Theory 946 and applications of genetic control systems. *Proceedings 947 of the IEEE* 110, 631–658. 948

949 14. Kotas, M.E., and Medzhitov, R. (2015). Homeostasis, 950 inflammation, and disease susceptibility. *Cell* 160, 816–827. 951

952 15. Khammash, M.H. (2021). Perfect adaptation in 953 biology. *Cell Systems* 12, 509–521. 954

955 16. Frei, T., and Khammash, M. (2021). Adaptive 956 circuits in synthetic biology. *Current Opinion in Systems 957 Biology* 28, 100399. 958

959 17. Xiao, F., and Doyle, J.C. (2018). Robust perfect 960 adaptation in biomolecular reaction networks. In 961 2018 IEEE conference on decision and control (CDC). 962 IEEE pp. 4345–4352. 963

964 18. Francis, B.A., and Wonham, W.M. (1976). The 965 internal model principle of control theory. *Automatica* 12, 457–465. 966

967 19. Åström, K.J., and Murray, R. (2021). Feedback 968 systems: an introduction for scientists and engineers. 969 Princeton university press. 970

971 20. Briat, C., Gupta, A., and Khammash, M. (2016). 972 Antithetic integral feedback ensures robust perfect 973 adaptation in noisy biomolecular networks. *Cell systems* 2, 15–26. 974

975 21. Hilfinger, A., and Paulsson, J. (2011). Separating 976 intrinsic from extrinsic fluctuations in dynamic 977 biological systems. *Proceedings of the National Academy 978 of Sciences* 108, 12167–12172. 979

980 22. Aoki, S.K., Lillacci, G., Gupta, A., Baumschlager, A., 981 Schweingruber, D., and Khammash, M. (2019). A 982 universal biomolecular integral feedback controller 983 for robust perfect adaptation. *Nature* 570, 533–537. 984

985 23. Gupta, A., and Khammash, M. (2022). Universal 986 structural requirements for maximal robust perfect 987 adaptation in biomolecular networks. *Proceedings 988 of the National Academy of Sciences* 119, 989 e2207802119. 990

991 24. Lillacci, G., Aoki, S., Schweingruber, D., and Kham- 992 mash, M. (2017). A synthetic integral feedback 993 controller for robust tunable regulation in bacteria. 994 *BioRxiv* pp. 170951. 995

996 25. Huang, H.H., Qian, Y., and Del Vecchio, D. (2018). 997 A quasi-integral controller for adaptation of 998 genetic modules to variable ribosome demand. *Nature 999 communications* 9, 5415. 999

999 26. Anastassov, S., Filo, M., Chang, C.H., and Kham- 999 mash, M. (2023). A cybergenetic framework for 999 engineering intein-mediated integral feedback 999 control systems. *Nature Communications* 14, 1337. 999

999 27. Frei, T., Chang, C.H., Filo, M., Arampatzis, A., 999 and Khammash, M. (2022). A genetic mammalian 999 proportional–integral feedback control circuit for 999 robust and precise gene regulation. *Proceedings 999 of the National Academy of Sciences* 119, 999 e2122132119. 999

999 28. Mallozzi, A., Fusco, V., Ragazzini, F., and 999 di Bernardo, D. (2024). The crisprator: a biomole- 999 cular circuit for automatic gene regulation in 999 mammalian cells with crispr technology. *bioRxiv*. 999

999 29. Filo, M., and Khammash, M. (2019). Optimal 999 parameter tuning of feedback controllers with 999 application to biomolecular antithetic integral 999 control. In 2019 IEEE 58th Conference on Decision and 999 Control (CDC). IEEE pp. 951–957. 999

999 30. Olsman, N., Baetica, A.A., Xiao, F., Leong, Y.P., 999 Murray, R.M., and Doyle, J.C. (2019). Hard limits 999 and performance tradeoffs in a class of antithetic 999 integral feedback networks. *Cell systems* 9, 49–63. 999

999 31. Qian, Y., and Del Vecchio, D. (2018). Realizing ‘in- 999 tegral control’ in living cells: how to overcome leaky 999 integration due to dilution? *Journal of The Royal 999 Society Interface* 15, 20170902. 999

999 32. Filo, M., Kumar, S., and Khammash, M. (2022). 999 A hierarchy of biomolecular proportional–integral– 999 derivative feedback controllers for robust perfect 999 adaptation and dynamic performance. *Nature 999 communications* 13, 2119. 999

999 33. Filo, M., Kumar, S., Anastassov, S., and Kham- 999 mash, M. (2022). Exploiting the nonlinear structure 999 of the antithetic integral controller to enhance 999 dynamic performance. In 2022 IEEE 61st Conference 999

1022 on Decision and Control (CDC). IEEE pp. 1294–
1023 1299.

1024 34. Briat, C., Gupta, A., and Khammash, M. (2018). An-
1025 antithetic proportional-integral feedback for reduced
1026 variance and improved control performance of
1027 stochastic reaction networks. *Journal of The Royal
1028 Society Interface* *15*, 20180079.

1029 35. Chevalier, M., Gómez-Schiavon, M., Ng, A.H., and
1030 El-Samad, H. (2019). Design and analysis of a
1031 proportional-integral-derivative controller with bio-
1032 logical molecules. *Cell Systems* *9*, 338–353.

1033 36. Samaniego, C.C., and Franco, E. (2021). Ultrasen-
1034 sitive molecular controllers for quasi-integral feed-
1035 back. *Cell Systems*.

1036 37. Alexis, E., Cardelli, L., and Papachristodoulou, A.
1037 (2022). On the design of a pid bio-controller with set
1038 point weighting and filtered derivative action. *IEEE
1039 Control Systems Letters* *6*, 3134–3139.

1040 38. Gupta, A., and Khammash, M. (2019). An antithetic
1041 integral rein controller for bio-molecular networks. In
1042 2019 IEEE 58th Conference on Decision and Con-
1043 trol (CDC). IEEE pp. 2808–2813.

1044 39. Oyarzún, D.A., and Hancock, E. (2022). Stabi-
1045 lisation of antithetic control via molecular buffering.
1046 *Journal of The Royal Society Interface*.

1047 40. Hancock, E.J., Ang, J., Papachristodoulou, A., and
1048 Stan, G.B. (2017). The interplay between feedback
1049 and buffering in cellular homeostasis. *Cell systems*
1050 *5*, 498–508.

1051 41. Filo, M., Gupta, A., and Khammash, M. (2024). Anti-
1052 windup strategies for biomolecular control systems
1053 facilitated by model reduction theory for sequestra-
1054 tion networks. *Science Advances* *10*, eadl5439.

1055 42. Kell, B., Ripsman, R., and Hilfinger, A. (2023).
1056 Noise properties of adaptation-conferring biochemical
1057 control modules. *Proceedings of the National
1058 Academy of Sciences* *120*, e2302016120.

1059 43. Anastassov, S., Filo, M., and Khammash, M. (2024).
1060 Inteins: A swiss army knife for synthetic biology.
1061 *Biotechnology Advances* pp. 108349.

1062 44. Gogarten, J.P., Senejani, A.G., Zhaxybayeva, O.,
1063 Olendzenski, L., and Hilario, E. (2002). Inteins:
1064 structure, function, and evolution. *Annual Reviews
1065 in Microbiology* *56*, 263–287.

1066 45. Wang, H., Wang, L., Zhong, B., and Dai, Z. (2022).
1067 Protein splicing of inteins: a powerful tool in syn-
1068 thetic biology. *Frontiers in Bioengineering and
1069 Biotechnology* *10*, 810180.

1070 46. Gillespie, D.T. (1977). Exact stochastic simulation of
1071 coupled chemical reactions. *The journal of physical
1072 chemistry* *81*, 2340–2361.

1073 47. Castillo-Hair, S.M., Sexton, J.T., Landry, B.P., Olson,
1074 E.J., Igoshin, O.A., and Tabor, J.J. (2016). Flowcal:
1075 a user-friendly, open source software tool for auto-
1076 matically converting flow cytometry data from arbi-
1077 trary to calibrated units. *ACS synthetic biology* *5*,
1078 774–780.

1079 48. Gerhardt, K.P., Rao, S.D., Olson, E.J., Igoshin, O.A.,
1080 and Tabor, J.J. (2021). Independent control of mean
1081 and noise by convolution of gene expression distri-
1082 butions. *Nature Communications* *12*, 6957.

1083 49. Shao, B., Rammohan, J., Anderson, D.A., Alper-
1084 ovich, N., Ross, D., and Voigt, C.A. (2021). Single-
1085 cell measurement of plasmid copy number and pro-
1086 moter activity. *Nature communications* *12*, 1475.

1087 50. Carvajal-Vallejos, P., Pallissé, R., Mootz, H.D., and
1088 Schmidt, S.R. (2012). Unprecedented rates and ef-
1089 ficiencies revealed for new natural split inteins from
1090 metagenomic sources. *Journal of Biological Chemistry*
1091 *287*, 28686–28696.

1092 51. Palanisamy, N., Degen, A., Morath, A., Ballestin
1093 Ballestin, J., Juraske, C., Öztürk, M.A., Sprenger,
1094 G.A., Youn, J.W., Schamel, W.W., and Di Ventura,
1095 B. (2019). Split intein-mediated selec-
1096 tion of cells containing two plasmids using a single
1097 antibiotic. *Nature communications* *10*, 4967.

1098 52. Yao, Z., Aboualizadeh, F., Kroll, J., Akula, I., Snider,
1099 J., Lyakisheva, A., Tang, P., Kotlyar, M., Jurisica,
1100 I., Boxem, M. et al. (2020). Split intein-mediated
1101 protein ligation for detecting protein-protein interac-
1102 tions and their inhibition. *Nature communications*
1103 *11*, 2440.

1104 53. Pinto, F., Thornton, E.L., and Wang, B. (2020). An
1105 expanded library of orthogonal split inteins enables
1106 modular multi-peptide assemblies. *Nature Commu-
1107 nications* *11*, 1529.

1108 54. Shepherd, C., Lawson-Williams, M., Holland, A.,
1109 Bello, A.J., Sexton, D.W., and Olorunniji, F.J. (2025).
1110 Conditional split inteins: Adaptable tools for pro-
1111 gramming protein functions. *International Journal
1112 of Molecular Sciences* *26*, 586.

1113 55. Potapov, V., Ong, J.L., Kucera, R.B., Langhorst,
1114 B.W., Biloti, K., Pryor, J.M., Cantor, E.J., Canton,
1115 B., Knight, T.F., Evans Jr, T.C. et al. (2018). Com-
1116 prehensive profiling of four base overhang ligation
1117 fidelity by t4 dna ligase and application to dna as-
1118 sembly. *ACS synthetic biology* *7*, 2665–2674.

1119 56. Marillonnet, S., and Grützner, R. (2020). Synthetic
1120 dna assembly using golden gate cloning and the hi-
1121 erarchical modular cloning pipeline. *Current proto-
1122 cols in molecular biology* *130*, e115.

1123 57. Lou, C., Stanton, B., Chen, Y.J., Munsky, B., and
1124 Voigt, C.A. (2012). Ribozyme-based insulator parts
1125 buffer synthetic circuits from genetic context. *Nature
1126 biotechnology* *30*, 1137–1142.

1127 58. Bindels, D.S., Haarbosch, L., Van Weeren, L.,
 1128 Postma, M., Wiese, K.E., Mastop, M., Aumonier, S.,
 1129 Gotthard, G., Royant, A., Hink, M.A. et al. (2017).
 1130 mscarlet: a bright monomeric red fluorescent protein for cellular imaging. *Nature methods* 14, 53–56.
 1131

1132 59. Lutz, R., and Bujard, H. (1997). Independent and
 1133 tight regulation of transcriptional units in *escherichia coli* via the lacr/o, the tetr/o and arac/i1-i2 regulatory
 1134 elements. *Nucleic acids research* 25, 1203–1210.
 1135

1136 60. Romano, E., Baumschlager, A., Akmeric, E.B.,
 1137 Palanisamy, N., Houmani, M., Schmidt, G., Öztürk,
 1138 M.A., Ernst, L., Khammash, M., and Di Ventura, B.
 1139 (2021). Engineering arac to make it responsive to
 1140 light instead of arabinose. *Nature chemical biology*
 1141 17, 817–827.

1142 61. Chung, C., Niemela, S.L., and Miller, R.H. (1989).
 1143 One-step preparation of competent *escherichia coli*:
 1144 transformation and storage of bacterial cells in
 1145 the same solution. *Proceedings of the National
 1146 Academy of Sciences* 86, 2172–2175.

1147 62. Baumschlager, A., Aoki, S.K., and Khammash, M.
 1148 (2017). Dynamic blue light-inducible t7 rna poly-
 1149 merases (opto-t7rnaps) for precise spatiotemporal
 1150 gene expression control. *ACS synthetic biology* 6,
 1151 2157–2167.

1152 63. Galbusera, L., Bellement-Theroue, G., Urchueguia,
 1153 A., Julou, T., and van Nimwegen, E. (2020). Using
 1154 fluorescence flow cytometry data for single-cell
 1155 gene expression analysis in bacteria. *PloS one* 15,
 1156 e0240233.

E. coli Plasmids

All plasmids (Table S1) were constructed from a custom-made library of parts with optimized overhangs⁵⁵ using standard Golden-Gate assembly methods and modular cloning (MoClo)⁵⁶ with restriction enzymes Bsal-HF v2 and BbsI-HF (New England Biolabs). Circuit modules were split between three different plasmids. The Gene 1 plasmids contain either *intC(gp41-1)* or *intN(gp41-1)*^{26,50} under a Bba_J23119 constitutive promoter and weak B0033 ribosomal binding site (RBS) from the Registry of Standard Biological Parts on a medium copy plasmid with p15A origin of replication and aminoglycoside adenyltransferase (*spec^R*) gene. The Gene 2 TetR-IntC plasmids consist of a *tetR(1-183)::intC(gp41-1)::tetR(184-212)* fusion²⁶ under the control of either a modified *P_{araB}* promoter²² and weak B0033 RBS or AraJ-B0033m ribozyme/RBS (for the weak and strong filtered proportional and sAIF circuits, respectively)⁵⁷ or a Bba_J23111 or Bba_J23119 constitutive promoter from the Registry of Standard Biological Parts (for the weak and strong open-loop circuits, respectively) and weak B0033 RBS on a low copy plasmid with pSC101 origin of replication and chloramphenicol-acyltransferase (*cam^R*) gene. The regulated Gene 3 output plasmid consists of a *V5::araC::mScarlet-I* fusion^{22,58} under the control of a *P_{LtetO-1}* promoter⁵⁹ and weak B0033 RBS on a high copy plasmid with ColE1 origin of replication and beta-lactamase (*carbR*) gene. Additionally, a set of unregulated Gene 3 output plasmids with *V5::araC::mScarlet-I* under a weak B0033 RBS and constitutive promoters Bba_J23114, Bba_J23106, Bba_J23102, Bba_J23111, Bba_J23119 from the Registry of Standard Biological Parts as well as J23101*, a modified weaker variant of Bba_J23101*⁶⁰ were constructed using the same backbone as the regulated Gene 3 output plasmid. Plasmids were transformed into *E. coli* host strain SKA360 for testing as previously described⁶¹. The plasmid combinations used for each circuit are listed in Table S2. Plasmid sequences are available at the following Github repository <https://github.com/Maurice-Filo/Sensor-Based-Biomolecular-Integral-Controllers>.

STAR METHODS

Growth Conditions

Escherichia coli cells were grown in M9 medium supplemented with 0.2% casamino acids, 0.4% glucose, 0.001% thiamine, 0.00006% ferric citrate, 0.1 mM calcium chloride, 1 mM magnesium sulfate, and 20 µg/mL uracil (Sigma-Aldrich Chemie GmbH), and incubated in an environmental shaker (New Brunswick) at 37°C with shaking at 230 rpm. Antibiotics (Sigma-Aldrich Chemie GmbH) were used at the following concentrations: carbenicillin (carb), 100 µg/mL; spectinomycin (spec), 100 µg/mL; chloramphenicol (cam), 34 µg/mL.

E. coli Host Strain

Host strain SKA360 (MG1655 Δ *araCBAD* Δ *lacIZYA* Δ *araE* Δ *araFGH* *attB::lacYA177C* Δ *rhaSRT* Δ *rhaBADM*) is a precursor strain to SKA703 constructed as previously described in²².

E. coli Steady-State Experiments

200 µl aliquots of M9 medium in 96-well flat-bottom plates (Greiner) with appropriate antibiotics were inoculated with the circuit strains from glycerol freeze stocks. The plates were covered with BreathSeal film (Greiner) and a plastic lid (Greiner) and were incubated overnight at 37°C with shaking to stationary phase. In the morning, cultures were diluted 1:1,200,000 in fresh 200 µl aliquots of M9 medium in 96-well flat-bottom plates containing arabinose (Sigma-Aldrich) at final concentrations of 0%, 0.2%, 0.35%, 0.5%, 0.75%, 1%, 1.5%, or 2% with or without 0.5 ng/mL anhydrotetracycline (aTc, Chemie Brunschwig). Plates were covered with BreathSeal film and plastic lids and incubated for six hours at 37°C with shaking. After six hours of shaking, all cultures were in exponential phase (optical density at 600 nm (OD) less

1232 than 0.1). As previously described, cell growth, trans-
1233cription, and translation were stopped with a rifampicin-
1234tetracycline solution and the mScarlet-I was matured for
1235 three hours at 37°C⁶². Matured samples were stored at
1236 4°C overnight and samples were measured by flow cy-
1237 tometry on a CytoFlex S (Beckman Coulter) the next day
1238 with a minimum of 50,000 events recorded. As a no-
1239 fluorescence control, host strain SKA360 was cultured,
1240 processed, and measured in parallel with the other sam-
1241ples. Rainbow calibration beads (Spherotech, RCP-30-
1242 5A) were also measured in the same run as each exper-
1243iment with a minimum of 50,000 events collected.

1244 Open loop 2 (OL 2), open loop 3 (OL 3), filtered
1245 proportional (fP), and sensor-based Antithetic Integral
1246 Feedback (sAIF) circuits were tested together in parallel,
1247 along with a no-fluorescence control (empty host strain
1248 SKA360) and rainbow calibration beads (Spherotech,
1249 RCP-30-5A), to ensure that all circuits were assayed un-
1250 der identical conditions and could be directly compared
1251 within each experiment. Single-plasmid experiments us-
1252 ing open loop 1 (OL 1) were performed separately in
1253 M9 medium without arabinose or aTc along with the no-
1254 fluorescence control and rainbow calibration beads. All
1255 experiments were performed on three independent days
1256 (biological replicates). Each OL 2, OL 3, fP, and sAIF
1257 circuit experiment included one sample per strain and
1258 condition, whereas OL 1 experiments were conducted
1259 with three technical replicates. Corresponding data are
1260 shown in Figures 7(c) and 7(e).

1261 *E. coli* Dynamic Experiments

1262 For this experiment, it was important that the cells were
1263 kept in exponential phase. A 3 mL aliquot of M9 medium
1264 containing appropriate antibiotics and 0.5% arabinose
1265 was inoculated with cells from glycerol freeze stocks at
1266 a low OD so that after approximately 10 hours of incu-
1267 bation overnight at 37°C and 230 rpm, cultures were at
1268 an OD between 0.01 and 0.03. The exponential phase
1269 culture was then used to start pseudo-time course ex-
1270 periments. Briefly, the time courses were split into two
1271 phases. The first phase was one hour of growth in 0.5%
1272 arabinose to ensure that the cultures were at steady-
1273 state and to assess the output level without any distur-
1274 bance. The second phase was six additional hours of
1275 growth in 0.5% arabinose with or without a constant 0.5
1276 ng/mL aTc disturbance. Cultures for time points 0-1 h
1277 were set up simultaneously and sampled every 30 min-
1278 utes. After 1 h of growth, cultures for time points 1.5-7
1279 h (with and without aTc) were set up simultaneously and
1280 sampled every 30 minutes. After collecting all the time
1281 points, mScarlet-I was matured for all the samples at the
1282 same time and matured samples were measured at the
1283 same time on the flow cytometer.

1284 Dilution strategy for time points 0 -1h

1285 The overnight exponential culture was diluted to an OD
1286 of 0.006 in 1.2 ml M9-0.5% arabinose. This initial 0.006
1287 OD dilution mix was used to inoculate 200 µl of M9-
1288 0.5% arabinose in column 2 of a 96-well flat-bottom

1289 plate (Greiner) with one row per circuit strain (Plate
1290 1). The remaining dilution mix was further diluted 2.3-
1291 fold in M9-0.5% arabinose and 200 µl aliquots of cells
1292 were aliquoted in columns 3-5 of the same 96-well plate.
1293 Empty wells were filled with 200 µl PBS and the plate
1294 was covered with a BreathSeal film and plastic lid and
1295 incubated at 37°C with shaking.

1296 Dilution strategy for time points 1-7h

1297 For the no disturbance (0 ng/mL aTc) condition, 96-well
1298 Plates 2 and 3 were prepared by aliquoting 200 µl M9-
1299 0.5% arabinose into Plate 2 columns 2-11 and Plate 3
1300 columns 2-3. For the disturbance (0.5 ng/mL aTc) con-
1301 ditions, Plates 4 and 5 were prepared by aliquoting 200
1302 µl M9-0.5% arabinose-0.9375 ng/ml aTc into Plate 4 col-
1303 umn 2 and 200 µl M9-0.5% arabinose-0.5 ng/ml aTc into
1304 Plate 4 columns 3-11 and Plate 5 columns 2-3. At time 1
1305 h, Plate 1 columns 4 and 5 were combined together and
1306 used to inoculate the 200 µl aliquots of media in Plate 2
1307 and Plate 4 column 2 with 175 µl culture (2.3-fold dilu-
1308 tion). The wells were pipetted up and down to mix and
1309 175 µl was transferred to the 200 µl of media in column
1310 3 of the same plate. This serial dilution procedure was
1311 continued for the remaining columns of Plates 2 and 4.
1312 175 µl of diluted culture in column 11 of Plates 2 and 4
1313 were then used to continue the serial dilutions into Plates
1314 3 and 5 column 2, respectively.

1315 Sample collection, mScarlet-I maturation and mea- 1316 surement

1317 The experimental protocol was set up so that each col-
1318 umn was one 30 minute time point. For each time point,
1319 100 µl of culture was collected and mixed with 100 µl
1320 rifampicin-tetracycline solution in 96-well plates on ice to
1321 stop cell growth, transcription, and translation⁶². Plates
1322 were kept on ice in the dark until all time points were
1323 sampled. After sampling the last point, the plates were
1324 kept on ice for one hour before covering with a Breath-
1325 Seal film and maturing the mScarlet-I for three hours at
1326 37°C. Matured samples were stored at 4°C overnight
1327 and samples were measured on a CytoFlex S the next
1328 day with a minimum of 20,000 events recorded. Time 0 h
1329 was collected from leftover dilution mix used to inoculate
1330 Plate 1. Time 0.5 h was from Plate 1 column 2. Time
1331 1h was from Plate 1 column 3. Time 1.5-6 h was from
1332 Plates 2 and 4 starting with column 2 and ending with
1333 column 11 (one column per 30 minutes). Time 6.5-7 h
1334 was from Plates 3 and 5 starting with column 2 and end-
1335 ing with column 3 (one column per 30 minutes). As a no-
1336 fluorescence control, host strain SKA360 was cultured,
1337 processed, and measured at time 7h in parallel with the
1338 other samples. Rainbow calibration beads (Spherotech,
1339 RCP-30-5A) were also measured in the same run as
1340 each experiment with a minimum of 50,000 events col-
1341 lected.

1342 **Flow Cytometry**

1343 All samples were measured on a CytoFlex S flow cy-
1344 tometer (Beckman Coulter) equipped with a 96-well
1345 plate sample loader using CytExpert version 2.4.0.28.
1346 mScarlet-I was measured with a 561 nm lasers and
1347 610/20 bandpass filter (ECD-H); the gain settings were
1348 as follows: forward scatter 100, side scatter 100,
1349 mScarlet-I 1000. Thresholds of 2,500 FSC-H and 1,000
1350 SSC-H were used for all samples.

1351 **Data Analysis**

1352 All flow cytometry files were processed using the python
1353 package FlowCal as previously described⁴⁷. Briefly,
1354 events were gated by SSC-H and FSC-H using a gate
1355 fraction of 0.3. mScarlet-I fluorescence (ECD-H) was
1356 then converted to Molecules of Equivalent Fluorochrome
1357 (MEF) using Rainbow calibration bead (Spherotech,
1358 RCP30-5A) measurements performed on the same day
1359 as each experiment.

1360 The arithmetic mean and variance of the cell popula-
1361 tions was calculated using the Python package NoiseC-
1362 ontrol as previously described⁴⁸.

1363 Briefly, the python script first trims the FlowCal-
1364 processed data to remove a small number of outliers.
1365 Trimming is based on a kernel density estimate of the
1366 log-fluorescence distribution, used to identify the flu-
1367 orescence range around the median where the density
1368 exceeds a 0.5% threshold. Then, the script subtracts
1369 autofluorescence, obtained from the untransformed host
1370 strain SKA360 measure on the same day as each exper-
1371 iment, as follows

$$\mathbb{E}[Y] = \mathbb{E}[Y_{\text{tot}}] - \mathbb{E}[Y_{\text{af}}]$$
$$\text{CV}[Y] = \frac{\sqrt{\text{CV}[Y_{\text{tot}}]^2 \mathbb{E}[Y_{\text{tot}}]^2 - \text{CV}[Y_{\text{af}}]^2 \mathbb{E}[Y_{\text{af}}]^2}}{\mathbb{E}[Y_{\text{tot}}] - \mathbb{E}[Y_{\text{af}}]},$$

1372 where Y_{af} is the autofluorescence and Y_{tot} is the total flu-
1373 orescence. We also analyzed our data using a different
1374 pipeline⁶³ and the conclusions remained unchanged.

1375 All experimental data was plotted in Python while com-
1376 putational simulations were carried out and plotted in
1377 MATLAB.

1378 **Code Availability**

1379 The MATLAB and Python codes generated in this
1380 study can be found at the following Github repos-
1381 itory <https://github.com/Maurice-Filo/Sensor-Based-Biomolecular-Integral-Controllers>.

Engineering Sensor-Based Antithetic Integral Controllers for Enhanced Dynamic Performance and Noise Attenuation

Maurice Filo^{1,2,✉}, Stephanie K. Aoki^{1,2,✉}, Mucun Hou^{1,2,✉}, Stanislav Anastassov^{1,✉}, and Mustafa Khammash^{1,*},[✉]

¹Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland

²These authors contributed equally

*Correspondence: mustafa.khammash@bsse.ethz.ch

Contents

S1 Transfer Functions	3
S1.1 Proportional & Feedforward Controllers	3
S1.2 Proportional-Integral Controllers	3
S2 Mappings between Filtered PI and Biomolecular Parameters	4
S2.1 Mappings for rAIF Controllers	5
S2.2 Mappings for sAIF Controllers	5
S3 Root-locus Analysis	6
S4 Pole Placement	7
S4.1 Repression	7
S4.2 Degradation	8
S5 Connections between the Deterministic & Stochastic Settings	8
S5.1 Deterministic Setting	8
S5.2 Stochastic Setting	9
S5.2.1 Filtered Proportional Controller	9
S5.2.2 sAIF Controller	9
S6 Non-Ideal Conditions: Dilution Effects	11
S6.1 Steady-State Sensitivities in the Deterministic Setting	11
S6.1.1 Comparison Between Non-Ideal sAIF and Filtered Proportional Controllers	11
S6.1.2 Comparison between Non-Ideal sAIF and rAIF Controllers	14
S6.2 Noise Analysis for the Non-Ideal sAIF Controller Using Linear Noise Approximation	16

List of Figures

S1	Actuation with multiple species.	18
S2	Filtered-PI Coverage.	18
S3	Dynamic Performance Assessment.	19
S4	Dynamics of Average Concentrations in the Stochastic Setting.	20
S5	Controlling three processes with rAIF, sAIF and fP controllers.	21
S6	Steady-state error comparison: non-ideal sAIF controller vs. filtered proportional controller.	22
S7	Dynamic performance vs. steady-state error for non-ideal sAIF and rAIF Controllers.	23
S8	Comparison of stationary noise between the non-ideal sAIF and filtered proportional (fP) controllers.	24
S9	Numerical analysis in the presence of both intrinsic and extrinsic noise.	25
S10	Time-course experiments illustrating the dynamic response of the output to a disturbance.	26
S11	Bar graphs showing the unnormalized data presented in Fig. 7(c).	26

S12	Noise amplification in an rAIF controller.	26
-----	--	----

List of Tables

S1	List of plasmids constructed and used in this study.	27
S2	List of testing strains constructed and used in this study.	27

S1 Transfer Functions

Let $(\bar{x}, \bar{z}_1, \bar{z}_2)$ denote the closed-loop fixed point when operating at a nominal exogenous input $\bar{\mu}$. Furthermore, let $(\tilde{x}, \tilde{z}_1, \tilde{z}_2)$ denote the perturbation from the closed-loop fixed point due to a disturbance or a perturbation $\tilde{\mu}$ of the exogenous input from its nominal value. That is, we have

$$\mu(t) = \bar{\mu} + \tilde{\mu}(t); \quad x(t) = \bar{x} + \tilde{x}(t); \quad z_i(t) = \bar{z}_i + \tilde{z}_i(t), \quad (\text{S1})$$

for $i = 1, 2$. Let $\hat{x}, \hat{z}_1, \hat{z}_2, \hat{\mu}$ and \hat{u} respectively denote the Laplace transforms of $\tilde{x}, \tilde{z}_1, \tilde{z}_2, \tilde{\mu}$ and \tilde{u} . For the actuation function h , define the partial derivatives as $\partial h(\bar{z}_1, \bar{z}_2, \bar{x}_L; \bar{x}_1) \triangleq [\sigma_1 \ -\sigma_2 \ -\sigma_L \ \sigma_x]$ with $\sigma_1, \sigma_2, \sigma_L \geq 0$, and let e_i be a vector of an appropriate size whose entries are all zeros except the i^{th} -entry being 1.

S1.1 Proportional & Feedforward Controllers

Consider the following closed-loop dynamics

$$\begin{cases} \dot{x} = f(x) + ue_1 \\ \dot{z}_1 = \mu - \delta' z_1 \\ \dot{z}_2 = \theta x_L - \delta z_2, \end{cases} \quad (\text{S2})$$

where the control action is given as $u = h(z_1, z_2, x_L; x_1)$ to encompass the two basic controller motifs listed in Fig. 2(c) and an additional controller where \mathbf{X}_L directly actuates \mathbf{X}_1 since now h is allowed to, more generally, depend on x_L . The approximated perturbation dynamics are thus given by the linearization that can be written separately for the process \mathcal{P} and the controller \mathcal{C} as

$$\begin{aligned} \mathcal{P} : \quad \dot{\tilde{x}} &= \underbrace{[\partial f(\bar{x}) + \sigma_x e_1 e_1^T]}_{A_p} \tilde{x} + \tilde{u} e_1 \\ \mathcal{C} : \quad \begin{bmatrix} \dot{\tilde{z}}_1 \\ \dot{\tilde{z}}_2 \end{bmatrix} &= \underbrace{\begin{bmatrix} -\delta' & 0 \\ 0 & -\delta \end{bmatrix}}_{A_c} \begin{bmatrix} \tilde{z}_1 \\ \tilde{z}_2 \end{bmatrix} + \underbrace{\begin{bmatrix} 0 & 1 \\ \theta & 0 \end{bmatrix}}_{B_c} \begin{bmatrix} \tilde{x}_L \\ \tilde{\mu} \end{bmatrix} \\ \tilde{u} &= \underbrace{\begin{bmatrix} \sigma_1 & -\sigma_2 \end{bmatrix}}_{C_c} \begin{bmatrix} \tilde{z}_1 \\ \tilde{z}_2 \end{bmatrix} + \underbrace{\begin{bmatrix} -\sigma_L & 0 \end{bmatrix}}_{D_c} \begin{bmatrix} \tilde{x}_L \\ \tilde{\mu} \end{bmatrix}, \end{aligned} \quad (\text{S3})$$

where, for convenience and with a slight abuse of notation, σ_x is absorbed in the dynamics of the process and so \tilde{u} does not involve \tilde{x}_1 . Taking the Laplace transforms on both sides of the equalities in Equation (S3) and recalling that the transfer matrix of the controller is $C_c(sI - A_c)^{-1}B_c + D_c$ yields the following transfer functions

$$\begin{aligned} \mathcal{P} : \quad \hat{x}_L(s) &= P(s)\hat{u}(s) \triangleq e_L^T(sI - A_p)^{-1}e_1\hat{u}(s) \\ \mathcal{C} : \quad \hat{u}(s) &= K_F \frac{\omega'_0}{s + \omega'_0} \hat{\mu}(s) - \left[K_P \frac{\omega_0}{s + \omega_0} + K'_P \right] \hat{x}_L(s), \end{aligned} \quad (\text{S4})$$

where

$$K_F \triangleq \frac{\sigma_1}{\delta'}, \quad K_P \triangleq \frac{\sigma_2\theta}{\delta}, \quad K'_P \triangleq \sigma_L, \quad \omega_0 \triangleq \delta, \quad \omega'_0 \triangleq \delta'.$$

As a result, the two cases presented in Fig. 2(c) can be directly obtained from Equation (S4) by choosing the control action $u = h(z_1, z_2, x_L; x_1)$ appropriately which leads to setting a subset of the partial derivatives $\sigma_1, \sigma_2, \sigma_L$ and σ_x to zero.

S1.2 Proportional-Integral Controllers

Consider the following closed-loop dynamics

$$\begin{cases} \dot{x} = f(x) + ue_1 \\ \dot{z}_1 = \mu - \eta z_1 z_2 \\ \dot{z}_2 = \theta x_L - \eta z_1 z_2, \end{cases} \quad (\text{S5})$$

where the control action is given as $u = h(z_1, z_2, x_L; x_1)$ to encompass the two cases presented in Fig. 3(a) and (b), and an additional controller where \mathbf{X}_L directly actuates \mathbf{X}_1 since now h is allowed to, more generally, depend on x_L .

The approximated perturbation dynamics are thus given by the linearization that can be written separately for the process \mathcal{P} and the controller \mathcal{C} as

$$\begin{aligned} \mathcal{P} : \quad \dot{\tilde{x}} &= \underbrace{[\partial f(\bar{x}) + \sigma_x e_1 e_1^T]}_{A_p} \tilde{x} + \tilde{u} e_1 \\ \mathcal{C} : \quad \begin{bmatrix} \dot{\tilde{z}}_1 \\ \dot{\tilde{z}}_2 \end{bmatrix} &= \underbrace{\begin{bmatrix} -\eta \bar{z}_2 & -\eta \bar{z}_1 \\ -\eta \bar{z}_2 & -\eta \bar{z}_1 \end{bmatrix}}_{A_c} \begin{bmatrix} \tilde{z}_1 \\ \tilde{z}_2 \end{bmatrix} + \underbrace{\begin{bmatrix} 0 & 1 \\ \theta & 0 \end{bmatrix}}_{B_c} \begin{bmatrix} \tilde{x}_L \\ \tilde{\mu} \end{bmatrix} \\ \tilde{u} &= \underbrace{\begin{bmatrix} \sigma_1 & -\sigma_2 \end{bmatrix}}_{C_c} \begin{bmatrix} \tilde{z}_1 \\ \tilde{z}_2 \end{bmatrix} + \underbrace{\begin{bmatrix} -\sigma_L & 0 \end{bmatrix}}_{D_c} \begin{bmatrix} \tilde{x}_L \\ \tilde{\mu} \end{bmatrix}, \end{aligned} \quad (S6)$$

where, for convenience and with a slight abuse of notation, σ_x is absorbed in the dynamics of the process and so \tilde{u} does not involve \tilde{x}_1 . Taking the Laplace transforms on both sides of the equalities in Equation (S6) and recalling that the transfer matrix of the controller is $C_c(sI - A_c)^{-1}B_c + D_c$ yields the following transfer functions

$$\begin{aligned} \mathcal{P} : \quad \hat{x}_L(s) &= P(s)\hat{u}(s) = e_L^T(sI - A_p)^{-1}e_1\hat{u}(s) \\ \mathcal{C} : \quad \hat{u}(s) &= \left[\frac{K_I}{s} \hat{e}(s) + K_F \hat{\mu}(s) - K_P K_S \hat{x}_L(s) \right] \frac{\omega_0}{s + \omega_0} - K_p \hat{x}_L(s), \end{aligned} \quad (S7)$$

where

$$\begin{cases} K_I \triangleq \frac{\sigma_1 \bar{z}_1 + \sigma_2 \bar{z}_2}{\bar{z}_1 + \bar{z}_2}, & K_F \triangleq \frac{\sigma_1}{\eta(\bar{z}_1 + \bar{z}_2)}, & K'_P \triangleq \sigma_L, \\ K_P \triangleq \frac{\sigma_2}{\eta(\bar{z}_1 + \bar{z}_2)}, & \omega_0 \triangleq \eta(\bar{z}_1 + \bar{z}_2), & K_S \triangleq \theta. \end{cases} \quad (S8)$$

As a result, the two cases presented in Fig. 3 can be directly obtained from Equation (S7) by choosing the control action $u = h(z_1, z_2, x_L; x_1)$ appropriately which leads to setting a subset of the partial derivatives $\sigma_1, \sigma_2, \sigma_L$ and σ_x to zero.

S2 Mappings between Filtered PI and Biomolecular Parameters

Throughout the subsequent analysis, we will make an assumption about the process. Let F_i ($i = 1, 2, \dots, L$) denote the steady-state maps of the process, that is, if u is a constant then with reference to the first equation in Equation (S5), we write

$$f(x) + ue_1 = 0 \quad \Rightarrow \quad x_i = F_i(u). \quad (S9)$$

Assumption 1. Assume that for the desired steady-state output $\bar{x}_L = r$, there exists a feasible supporting input \bar{u} and steady-state concentrations of the process species $\bar{x}_i, i = 1, \dots, L-1$, that achieve the desired output. More precisely, for $r > 0$, $\exists \bar{u} \in \mathbb{U}$ and $\bar{x}_i \geq 0$ such that $F_L(\bar{u}) = r$ and $\bar{x}_i = F_i(\bar{u})$, where \mathbb{U} is the set of feasible inputs.

Remark 1. The set of feasible inputs depends on the type of actuation. For instance if the actuation is carried out via non-saturating production only, then $\mathbb{U} = \mathbb{R}_+$; whereas if it is carried out via non-saturating degradation only, then $\mathbb{U} = \mathbb{R}_-$. If both non-saturating production and degradation actuations are allowed then, $\mathbb{U} = \mathbb{R}$.

Remark 2. We emphasize that this assumption does not depend on the type of controller used. Instead, it only depends on the process and the particular choice of actuated input species and actuation mechanism. This assumption has to be satisfied, otherwise, the actuation is simply inadequate and there is no controller that can achieve the desired output without changing the choice of the actuated input species and/or actuation mechanism.

The set of formulas in Equation (S8) provides a way to calculate the block diagram parameters (see Fig. 3(b)) from the biomolecular parameters. To go in the opposite direction, one can solve Equation (S8) for the biomolecular parameters to obtain

$$\begin{cases} \eta = \frac{1}{\mu} \frac{(K_I - \omega_0 K_F)(\omega_0 K_P - K_I)}{(K_P - K_F)^2}; \\ \sigma_1 = \omega_0 K_F; \quad \sigma_2 = \omega_0 K_P; \quad \sigma_L = K'_P; \\ h(\bar{z}_1, \bar{z}_2, \bar{x}_L; \bar{x}_1) = \bar{u}, \end{cases} \quad (S10)$$

where $\bar{z}_1 = \mu \frac{K_P - K_F}{K_I - \omega_0 K_F}$, $\bar{z}_2 = \mu \frac{K_P - K_F}{\omega_0 K_P - K_I}$ and \bar{u} is fixed (it depends on the process and setpoint only). Of course whether this inversion is doable or not depends on the number of degrees of freedom that shape the actuation function h .

Our goal is to derive the mappings between the Filtered PI parameters (K_P, K_I, ω_0) and the various biomolecular parameters (η, \dots). We first start with the analysis problem: given the biomolecular parameters, what are the PI gains and cutoff frequency? Then we move to the design problem: what are the biomolecular parameters that achieve some desired PI gains and cutoff frequency? We treat the analysis and design problems for the rAIF controller and the sAIF controller with two biologically-relevant functional forms of h implementing the two negative actuation mechanisms (production and removal) shown in Fig. 2(b).

S2.1 Mappings for rAIF Controllers

For rAIF with $h(z_1, z_2, x_L; x_1) = kz_1$, we have $K_P = K'_P = 0$ and for a fixed μ and θ , the mappings back and forth between the block diagram and biomolecular parameters are given by

$$\begin{cases} \text{Analysis: } K_I = \frac{k\bar{z}_1}{\bar{z}_1 + \bar{z}_2}, & \omega_0 = \eta(\bar{z}_1 + \bar{z}_2) \\ \text{Design: } \eta = \frac{\omega_0 K_I}{\bar{u}}, & k^\pm = \frac{\bar{u}}{\mu} \frac{\omega_0}{2} \left[1 \mp \sqrt{1 - 4 \frac{\bar{u}}{\mu} \frac{K_I}{\omega_0}} \right], \end{cases} \quad (\text{S11})$$

Observe that K_F is left out on purpose because with this actuation function K_F is not a degree of freedom (unless μ or θ are allowed to be tuned). Furthermore, since k has to be a nonnegative real number, then the following condition constrains the coverage of the integral gain and cutoff frequency:

$$K_I \leq \frac{\bar{u}}{4\mu} \omega_0. \quad (\text{S12})$$

S2.2 Mappings for sAIF Controllers

For sAIF, we have $K_F = K'_P = 0$ since h is not a function of z_1 ; instead it is a monotonically decreasing function of z_2 . We consider actuations via repression and degradation separately.

Actuation via Repression

The actuation function h is given here as a Hill-type function with cooperativity, that is

$$u = h(z_2; x_1) = \frac{\alpha}{1 + (z_2/\kappa)^n}, \quad (\text{S13})$$

where κ is the dissociation constant, α is the maximal production rate and n is the Hill coefficient. The setpoint is given by $\bar{x}_L = r \triangleq \mu/\theta$. For a given process and setpoint r , satisfying Assumption 1, the supporting input \bar{u} satisfies $F_L(\bar{u}) = r$ and is fixed. We first treat the analysis problem, then move on to the design problem.

Analysis. The controller coordinates (\bar{z}_1, \bar{z}_2) of the fixed point are given by

$$\bar{z}_1 = \frac{\mu}{\eta \kappa \sqrt[n]{\frac{\alpha}{\bar{u}} - 1}}, \quad \bar{z}_2 = \kappa \sqrt[n]{\frac{\alpha}{\bar{u}} - 1}. \quad (\text{S14})$$

Clearly, the following condition on the biomolecular parameters has to be satisfied to guarantee that $\bar{z}_1, \bar{z}_2 > 0$,

$$\alpha > \bar{u}. \quad (\text{S15})$$

Violating this condition causes both coordinates of the fixed point to become either negative or complex and thus causing instability. By substituting the partial derivatives of the actuation function $\sigma_1 = \sigma_L = \sigma_x = 0$ in Equation (S8), one can write the PI gains (K_P, K_I) and cutoff frequency ω_0 in terms of the various biochemical parameters as

$$K_I = \frac{\sigma_2 \bar{z}_2}{\bar{z}_1 + \bar{z}_2}, \quad K_P = \frac{\sigma_2}{\eta(\bar{z}_1 + \bar{z}_2)}, \quad \omega_0 = \eta(\bar{z}_1 + \bar{z}_2). \quad (\text{S16})$$

where $\sigma_2 = n \frac{\bar{u}^2}{\alpha \kappa} \left(\frac{\bar{z}_2}{\kappa} \right)^{n-1}$.

Design. By fixing μ and r (and thus \bar{u}), one can easily solve the equations given in Equation (S14) and Equation (S16) for the biomolecular parameters α, κ , and η in terms of the PI gains and cutoff frequency to obtain

$$\eta = \frac{1}{\mu} \frac{K_I}{K_P} \left(\omega_0 - \frac{K_I}{K_P} \right), \quad \alpha = \frac{\bar{u}}{1 - \frac{\mu}{n\bar{u}} \frac{\omega_0 K_P}{\omega_0 - \frac{K_I}{K_P}}}, \quad \kappa = \frac{\mu}{\omega_0 - \frac{K_I}{K_P}} \sqrt[n]{n \frac{\bar{u}}{\mu} \frac{\omega_0 - \frac{K_I}{K_P}}{\omega_0 K_P} - 1}. \quad (\text{S17})$$

Filtered-PI Coverage. Constraining α, κ and η to be non-negative and to satisfy condition Equation (S15) yields the following achievable PI gains and cutoff frequency.

$$\mathcal{S}_r^n = \left\{ (K_P, K_I, \omega_0) \in \mathbb{R}_+^3 : K_P < n \frac{\bar{u}}{\mu}, K_I < \omega_0 K_P \left(1 - \frac{\mu K_P}{n \bar{u}}\right) \right\}. \quad (\text{S18})$$

This indicates that employing repression for negative actuation imposes an upper bound on both the proportional gain K_P and integral gain K_I . It is worth noting that these upper bounds can be relaxed by increasing n since $\mathcal{S}_r^n \subset \mathcal{S}_r^{n+1}$, suggesting that cooperativity enhances the coverage, thereby enabling more flexible tuning of the filtered PI parameters. Lastly, it is important to highlight that the upper bound of K_I depends not only on the process and the setpoint via the supporting input \bar{u} , but also on the proportional gain K_P and cutoff frequency ω_0 .

Actuation via Degradation

Next, consider the case where \mathbf{Z}_2 degrades the input species \mathbf{X}_1 . The actuation function h is thus given by

$$u = h(z_2; x_1) = \alpha - \gamma \bar{z}_2 \xi(x_1), \quad (\text{S19})$$

where $\xi(x_1) = \frac{\bar{x}_1}{\bar{x}_1 + \kappa_x}$. The controller coordinates (\bar{z}_1, \bar{z}_2) of the fixed point are

$$\bar{z}_1 = \frac{\mu \gamma \xi(\bar{x}_1)}{\eta(\alpha - \bar{u})}, \quad \bar{z}_2 = \frac{\alpha - \bar{u}}{\gamma \xi(\bar{x}_1)}, \quad (\text{S20})$$

with $\xi(\bar{x}_1) \triangleq \frac{\bar{x}_1}{\bar{x}_1 + \kappa_x} \approx 1$, by choosing κ_x to be small for simplicity. Note that this assumption can be easily relaxed. Calculations of the analysis problem are similar to the repression case but with $\sigma_2 = \gamma \xi(\bar{x}_1) \approx \gamma$. The mappings from the PI gains (K_P, K_I) and the cutoff frequency ω_0 to the biomolecular parameters are given by

$$\eta = \frac{1}{\mu} \frac{K_I}{K_P} \left(\omega_0 - \frac{K_I}{K_P} \right), \quad \alpha \approx \bar{u} + \mu \frac{\omega_0 K_P}{\omega_0 - \frac{K_I}{K_P}}, \quad \gamma \approx \omega_0 K_P. \quad (\text{S21})$$

Constraining the biomolecular parameters to be non-negative yields the following achievable PI parameters,

$$\mathcal{S}_d = \left\{ (K_P, K_I, \omega_c) \in \mathbb{R}_+^3 : K_I < \omega_0 K_P \right\}. \quad (\text{S22})$$

This indicates that employing degradation for negative actuation, imposes an upper bound on the integral gain K_I only. Furthermore, this bound is less restrictive than that corresponding to the actuation via repression. In fact, observe that for all $n = 1, 2, \dots$, we have $\mathcal{S}_r^n \subset \mathcal{S}_r^{n+1} \subset \mathcal{S}_d$ as visually demonstrated in SI Fig. S2. Also note that \mathcal{S}_r^n converges to \mathcal{S}_d as $n \rightarrow \infty$.

S3 Root-locus Analysis

To carry out a standard root-locus analysis, the closed-loop transfer function should be rewritten in the following form

$$H(s) = \frac{T(s)}{1 + KG(s)}, \quad (\text{S23})$$

where K is the constant gain of interest (e.g. K_I or K_P), such that $KG(s) \triangleq K \frac{N(s)}{D(s)}$ represents the loop gain, and $T(s) \triangleq \frac{M(s)}{D(s)}$ is a rational function of s which does not play a role in the closed-loop root-locus. For the rAIF topology in Fig. 3(a) which realizes a filtered (I + FF) controller, Equation (9) can be rewritten in the form of Equation (S23) as

$$K = K_I, \quad G(s) = \frac{K_S \omega_0}{s(s + \omega_0)(s + \gamma_1)}. \quad (\text{S24})$$

The root-locus starts (at $K_I = 0$) from the poles $(0, -\omega_0, -\gamma_1)$ of $G(s)$ and ends (at $K_I \rightarrow \infty$) at its zeros ($s \rightarrow \infty$ because $N(s) = K_S \omega_0$ is a constant). As K_I is increased from zero, the first root-locus branch starting from the most negative open-loop pole, $-\max(\gamma_1, \omega_0)$, moves on the real axis toward $-\infty$. The other two branches move toward each other and break away from the real axis and approach two asymptotes intersecting with the real axis at $-(\gamma_1 + \omega_0)/3$ with angles $\pi/3$ and $-\pi/3$. The break-away point of the root-locus branch starting from $s = -\min(\gamma_1, \omega_0)$ and $s = 0$ is at

$$s_b = \frac{\sqrt{\omega_0^2 + \gamma_1^2 - \omega_0 \gamma_1} - (\omega_0 + \gamma_1)}{3}, \quad (\text{S25})$$

and so it is easy to show that $-\frac{\gamma_1}{2} < s_b \leq 0$. In fact, the fastest response which can be achieved by an infinite cutoff frequency ω_0 is limited by a threshold dictated by $\frac{\gamma_1}{2}$. These results are summarized in Fig. 4 (a) of the main text. More details are also reported in SI Fig. S3(a).

S4 Pole Placement

In this section, we derive the bounds on the achievable poles for the two negative actuation scenarios of sAIF: repression and degradation. Placing the three poles at a single location $s = -a$, allows us to express (K_P, K_I, ω_0) in terms of the birth-death parameter γ_1 , the sensing gain K_S , and the placed pole $-a$ as shown in Equation (11). Note that the supporting input \bar{u} is calculated using the equation $\bar{u} - \gamma_1 r = 0$, where $r \triangleq \mu/\theta$ represents the setpoint.

S4.1 Repression

Plugging (K_P, K_I, ω_0) in the coverage condition in Equation (S18) yields

$$\begin{cases} 0 < \frac{3a^2 - \gamma_1(3a - \gamma_1)}{K_S(3a - \gamma_1)} < \frac{n\gamma_1}{K_S} \\ \frac{a^3 n \gamma_1}{(n+1)\gamma_1(3a - \gamma_1) - 3a^2} < 3a^2 - \gamma_1(3a - \gamma_1). \end{cases} \quad (\text{S26})$$

From the first inequality, we get

$$\frac{n+1 - \sqrt{(n+1)(n-\frac{1}{3})}}{2} < a < \frac{n+1 + \sqrt{(n+1)(n-\frac{1}{3})}}{2}, \quad (\text{S27})$$

and from the second, we get $\zeta_1 < a < \zeta_2$ where ζ_1, ζ_2 are the two positive roots of the following fourth-order polynomial equation given by

$$9\zeta^4 - (8n+18)\zeta^3 + (12n+15)\zeta^2 - (6n+61)\zeta + (n+1) = 0. \quad (\text{S28})$$

Calculating the intersection of the two inequalities yields the bounds for the achievable poles $s_l(n)\gamma_1 < a < s_u(n)\gamma_1$ where

$$\begin{cases} s_l(n) = \max \left(\frac{n+1 - \sqrt{(n+1)(n-\frac{1}{3})}}{2}, \zeta_1 \right) \\ s_u(n) = \min \left(\frac{n+1 + \sqrt{(n+1)(n-\frac{1}{3})}}{2}, \zeta_2 \right). \end{cases} \quad (\text{S29})$$

In the case of repression without cooperativity, it is not possible to place the three poles at a single location. However, we can still study the dynamics by placing the poles at two different locations instead of one. To this end, assume two poles are placed at $s = -a_1$ and one pole at $s = -a_2$. Equating the closed-loop characteristic polynomial in this case $(s + a_1)^2(s + a_2)$ to the denominator of $H_{\text{sAIF}}(s)$ gives the expression of the PI gains (K_P, K_I) and the cutoff frequency ω_0 in terms of the birth-death parameter γ_1 , the sensing gain K_S and the placed pole locations $-a_1, -a_2$ as

$$\begin{cases} K_P = \frac{a_1^2 + 2a_1 a_2}{K_S(2a_1 + a_2 - \gamma_1)} - \frac{\gamma_1}{K_S}, \\ K_I = \frac{a_1^2 a_2}{K_S(2a_1 + a_2 - \gamma_1)}, \quad \omega_0 = 2a_1 + a_2 - \gamma_1. \end{cases} \quad (\text{S30})$$

Plugging (K_P, K_I, ω_0) in the coverage condition in Equation (S18) yields

$$\begin{cases} 0 < \frac{B_2}{B_1} < (n+1)\gamma_1 \\ \frac{n\gamma_1 a_1^2 a_2}{(n+1)\gamma_1 B_1 - B_2} < B_2 - B_1 \end{cases} \quad (\text{S31})$$

where $B_1 = 2a_1 + a_2 - \gamma_1$, $B_2 = a_1^2 + 2a_1 a_2$. Rewriting $a_1 = b_1\gamma_1$ and $a_2 = b_2\gamma_2$, the inequalities in Equation (S31) simplify to

$$\begin{cases} (n+1)c_1 - C_2 > 0 \\ (C_2 - C_1)[(n+1)C_1 - C_2] - nb_1^2 b_2 > 0 \end{cases} \quad (\text{S32})$$

where $C_1 = 2b_1 + b_2 - 1$, $C_2 = b_1^2 + 2b_1 b_2$. One can rely on graphical tools to calculate the intersection of the two inequalities as demonstrated in SI Fig. S3(d).

S4.2 Degradation

Plugging (K_P, K_I, ω_0) in the coverage condition in Equation (S22) yields

$$\frac{a^3}{K_S(3a - \gamma_1)} < (3a - \gamma_1) \frac{3a^2 - \gamma_1(3a - \gamma_1)}{K_S(3a - \gamma_1)}, \quad (\text{S33})$$

which simplifies to $a > \frac{\gamma_1}{2}$.

S5 Connections between the Deterministic & Stochastic Settings

This section delves into the connections that tie the sAIF controller to the pure integral controller on one hand, and the filtered proportional controller on the other. Specifically, we connect their performance with respect to the gains in the deterministic setting, and noise behavior in the stochastic setting. As a result of this analysis, we draw a connection between deterministic gains and stochastic noise characteristics.

S5.1 Deterministic Setting

We begin by examining how the gains of the sAIF controller change while tuning the sequestration rate η . As calculated in Equation (S7) and Equation (S16), the transfer function of the sAIF controller is given by

$$\mathcal{C} : \hat{u}(s) = \left[\frac{K_I}{s} \hat{e}(s) - K_P \hat{x}_L(s) \right] \frac{\omega_0}{s + \omega_0}, \quad (\text{S34})$$

where

$$K_I \triangleq \frac{\sigma_2 \bar{z}_2}{\bar{z}_1 + \bar{z}_2}, \quad K_P \triangleq \frac{\sigma_2 \theta}{\eta(\bar{z}_1 + \bar{z}_2)}, \quad \omega_0 \triangleq \eta(\bar{z}_1 + \bar{z}_2). \quad (\text{S35})$$

Note the slight change of notation in the controller transfer function: the proportional gain K_P here is equal to $K_P K_S$ in Equation (S7). This change of notation is necessary to perform a fair comparison with the filtered proportional controller. Recall that the supporting input $\bar{u} = h(\bar{z}_2)$ that steers the output to the robust setpoint at steady state depends solely on the setpoint r and the process (see Assumption 1 and the remarks thereafter). Therefore, as long as closed-loop stability is maintained, RPA is achieved with $\bar{x}_L = \mu/\theta$, and the steady state value \bar{z}_2 is independent of η . However, \bar{z}_1 changes in accordance with η to guarantee RPA. From Equation (S5), at steady state we have $\mu = \eta \bar{z}_1 \bar{z}_2$, and thus we can express $\bar{z}_1 = \frac{\mu}{\eta \bar{z}_2}$. To this end, getting rid of \bar{z}_1 in the gains of sAIF controller yields

$$K_I = \frac{\sigma_2 \bar{z}_2}{\frac{\mu}{\eta \bar{z}_2} + \bar{z}_2}, \quad K_P = \frac{\sigma_2 \theta}{\frac{\mu}{\bar{z}_2} + \eta \bar{z}_2}, \quad \omega_0 = \frac{\mu}{\bar{z}_2} + \eta \bar{z}_2. \quad (\text{S36})$$

Observe that K_I and ω_0 are monotonically increasing in η , while K_P is monotonically decreasing in η . Hence, varying the sequestration rate η tunes the integral and proportional gains in opposite directions. Next, let us examine the two extreme values of η : 0 and ∞ . Observe that as $\eta \rightarrow \infty$, we have

$$\lim_{\eta \rightarrow \infty} K_I = \sigma_2, \quad \lim_{\eta \rightarrow \infty} K_P = 0, \quad \lim_{\eta \rightarrow \infty} \omega_0 = \infty. \quad (\text{S37})$$

Therefore, increasing η towards infinity yields a pure integral controller (with no low-pass filter). In contrast, for small values of η , we have

$$K_I \approx 0, \quad K_P \approx \frac{\sigma_2 \theta}{\mu/\bar{z}_2}, \quad \omega_0 \approx \mu/\bar{z}_2. \quad (\text{S38})$$

Observe that Equation (S38) becomes identical to Equation (S4) (with $K_F = K'_P = 0$) by equating the degradation rate δ of \mathbf{Z}_2 in the filtered proportional controller to the cutoff frequency of the sAIF controller, i.e. $\delta \triangleq \omega_0 = \mu/\bar{z}_2$. This implies that for small η , the sAIF controller behaves like the filtered proportional controller. In fact, as far as the sequestration reaction is concerned, the highest proportional gain that can be achieved by the sAIF controller corresponds to the gain of the filtered proportional controller with $\delta \triangleq \mu/\bar{z}_2$. This indicates that the proportional gain of the sAIF controller is limited by the filtered proportional component used to assemble the sAIF controller. This analysis reveals how the sAIF controller connects a pure integral controller with a filtered proportional controller, where the sequestration rate η dictates the relative contribution of the two components since

$$\frac{K_P}{K_I} = \frac{\theta}{\eta \bar{z}_2}, \quad (\text{S39})$$

where \bar{z}_2 is independent of η .

S5.2 Stochastic Setting

How does this connection established in the deterministic setting translate into the stochastic setting? We explore this question by analyzing the coefficient of variation (CV) across different controllers for a simple birth-death process. The CV, defined as the ratio between the standard deviation and the mean, gives us a dimensionless measure of variability. Given the intractability of the chemical master equation (CME) and the challenges posed by the moment closure problem, we estimate the CV of the output using the linear noise approximation (LNA).

S5.2.1 Filtered Proportional Controller

In the stochastic setting, a simple birth-death process controlled by the filtered proportional controller of Fig. 2(c) can be modeled by a stochastic chemical reaction network (SCRN) represented by the following stoichiometry matrix and propensity function

$$S = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}, \quad \lambda(x, z_2) = [h(z_2) \quad \gamma x \quad \theta x \quad \delta z_2]^T. \quad (\text{S40})$$

LNA provides algebraic equations that approximate the stationary mean $(\mathbb{E}[\bar{X}], \mathbb{E}[\bar{Z}_2])$ and covariance $\bar{\Sigma}$ of the closed-loop state vector $[X \quad Z_2]^T$ given by

$$\begin{cases} h(\mathbb{E}[\bar{Z}_2]) - \gamma \mathbb{E}[\bar{X}] \approx 0 \\ \theta \mathbb{E}[\bar{X}] - \delta \mathbb{E}[\bar{Z}_2] \approx 0 \\ A\bar{\Sigma} + \bar{\Sigma}A^T + W \approx 0, \end{cases} \quad (\text{S41})$$

where $A \triangleq \begin{bmatrix} -\gamma & -\sigma_2 \\ \theta & -\delta \end{bmatrix}$, $W \triangleq \begin{bmatrix} h(\mathbb{E}[\bar{Z}_2]) + \gamma \mathbb{E}[\bar{X}] & 0 \\ 0 & \theta \mathbb{E}[\bar{X}] + \delta \mathbb{E}[\bar{Z}_2] \end{bmatrix}$ and $\sigma_2 \triangleq -h'(\mathbb{E}[\bar{Z}_2])$. Using the first two equations in Equation (S41), we get rid of the terms $h(\mathbb{E}[\bar{Z}_2])$ and $\mathbb{E}[\bar{Z}_2]$ in W to express it in terms of $\mathbb{E}[\bar{X}]$ as $W = \begin{bmatrix} 2\gamma & 0 \\ 0 & 2\theta \end{bmatrix} \mathbb{E}[\bar{X}]$. Thus solving the Lyapunov equation in Equation (S41), we obtain $\text{Var}[\bar{X}]$ from $\bar{\Sigma}_{11}$. This allows us to express the CV in terms of the expectation as

$$\text{CV}[\bar{X}]^2 \approx \frac{1}{\mathbb{E}[\bar{X}]} \left[1 + \frac{\sigma_2 \theta (\sigma_2 - \delta)}{(\gamma + \delta)(\gamma \delta + \sigma_2 \theta)} \right]. \quad (\text{S42})$$

To connect the CV with the deterministic proportional gain, we recall that $K_P \triangleq \frac{\sigma_2 \theta}{\omega_0}$ and $\omega_0 \triangleq \delta$, and thus we have

$$\text{CV}[\bar{X}]^2 \approx \frac{1}{\mathbb{E}[\bar{X}]} \left[1 + \frac{K_P \omega_0 \left(\frac{K_P}{\theta} - 1 \right)}{(\gamma + \omega_0)(\gamma + K_P)} \right]. \quad (\text{S43})$$

Compared to the CV in the open-loop in Equation (13), the filtered proportional controller attenuates noise if

$$K_P < \theta \text{ or equivalently } \sigma_2 < \omega_0. \quad (\text{S44})$$

It is important to mention that this result should not be interpreted as "lower proportional gain reduces noise". Instead, it shows that the noise reduction is constrained by the low-pass filter (ω_0 and θ). In fact, if we increase ω_0 and θ towards ∞ , the filtered proportional controller approaches the unfiltered proportional controller which unconditionally reduces noise.

S5.2.2 sAIF Controller

Next, we consider the simple birth-death process controlled by the sAIF controller depicted in Fig. 3(a). The closed-loop can now be modeled as a SCRN represented by the following stoichiometry matrix and propensity function

$$S = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & -1 \end{bmatrix}, \quad \lambda(x, z_1, z_2) = [h(z_2) \quad \gamma x \quad \mu \quad \theta x \quad \eta z_1 z_2]^T. \quad (\text{S45})$$

Once again, LNA provides algebraic equations that approximate the stationary mean $(\mathbb{E}[\bar{X}], \mathbb{E}[\bar{Z}_1], \mathbb{E}[\bar{Z}_2])$ and covariance $\bar{\Sigma}$ of the closed-loop state vector $[X \ Z_1 \ Z_2]^T$ given by

$$\begin{cases} h(\mathbb{E}[\bar{Z}_2]) - \gamma\mathbb{E}[\bar{X}] \approx 0 \\ \mu - \eta\mathbb{E}[\bar{Z}_1]\mathbb{E}[\bar{Z}_2] \approx 0 \\ \theta\mathbb{E}[\bar{X}] - \eta\mathbb{E}[\bar{Z}_1]\mathbb{E}[\bar{Z}_2] \approx 0 \\ A\bar{\Sigma} + \bar{\Sigma}A^T + W \approx 0, \end{cases} \quad (\text{S46})$$

where $A \triangleq \begin{bmatrix} -\gamma & 0 & -\sigma_2 \\ 0 & -\eta\mathbb{E}[\bar{Z}_2] & -\eta\mathbb{E}[\bar{Z}_1] \\ \theta & -\eta\mathbb{E}[\bar{Z}_2] & -\eta\mathbb{E}[\bar{Z}_1] \end{bmatrix}$, $W = \begin{bmatrix} h(\mathbb{E}[\bar{Z}_2]) + \gamma\mathbb{E}[\bar{X}] & 0 & 0 \\ 0 & \mu + \eta\mathbb{E}[\bar{Z}_1]\mathbb{E}[\bar{Z}_2] & \eta\mathbb{E}[\bar{Z}_1]\mathbb{E}[\bar{Z}_2] \\ 0 & \eta\mathbb{E}[\bar{Z}_1]\mathbb{E}[\bar{Z}_2] & \theta\mathbb{E}[\bar{X}] + \eta\mathbb{E}[\bar{Z}_1]\mathbb{E}[\bar{Z}_2] \end{bmatrix}$

and $\sigma_2 \triangleq -h'(\mathbb{E}[\bar{Z}_2])$. Using the first three equations in Equation (S46), we get rid of the terms $h(\mathbb{E}[\bar{Z}_2])$, μ , and $\mathbb{E}[\bar{Z}_1]\mathbb{E}[\bar{Z}_2]$ in W to express it in terms of $\mathbb{E}[\bar{X}]$ as $W = \begin{bmatrix} 2\gamma & 0 & 0 \\ 0 & 2\theta & \theta \\ 0 & \theta & 2\theta \end{bmatrix} \mathbb{E}[\bar{X}]$. Similarly, we substitute $\mathbb{E}[\bar{Z}_1] \approx \mu/\eta\mathbb{E}[\bar{Z}_2]$ and $\mathbb{E}[\bar{Z}_2] \approx h^{-1}(\gamma\mathbb{E}[\bar{X}])$ in A . Hence, solving the Lyapunov equation in Equation (S46), we obtain $\text{Var}[\bar{X}]$ from $\bar{\Sigma}_{11}$. This allows us to express the CV in terms of the expectation as

$$\text{CV}[\bar{X}]^2 \approx \frac{1}{\mathbb{E}[\bar{X}]} \left[1 + \frac{\sigma_2\theta(\sigma_2 - \omega_0) + \eta\mathbb{E}[\bar{Z}_2]\sigma_2(\omega_0 + \gamma + \theta)}{(\gamma + \omega_0)(\gamma\omega_0 + \sigma_2\theta) - \eta\mathbb{E}[\bar{Z}_2]\sigma_2\theta} \right], \quad (\text{S47})$$

where

$$\omega_0 \triangleq \eta(\mathbb{E}[\bar{Z}_1] + \mathbb{E}[\bar{Z}_2]) = \frac{\mu}{\mathbb{E}[\bar{Z}_2]} + \eta\mathbb{E}[\bar{Z}_2] \quad \text{and} \quad \mathbb{E}[\bar{Z}_2] \approx h^{-1}(\gamma\mathbb{E}[\bar{X}]). \quad (\text{S48})$$

Two observations can now be made regarding Equation (S47) for a given setpoint $\mathbb{E}[\bar{X}] = \mu/\theta$. First, computing the derivative of $\text{CV}[\bar{X}]^2$ with respect to η yields

$$\frac{d}{d\eta} \text{CV}[\bar{X}]^2 \approx \frac{\mu\sigma_2\mathbb{E}[\bar{Z}_2]^2}{\mathbb{E}[\bar{X}]} \frac{\eta^2\gamma\mathbb{E}[\bar{Z}_2]^4 + 2\eta(\gamma^2 + \theta\gamma + \sigma_2\theta)\mathbb{E}[\bar{Z}_2]^3 + \gamma(\gamma^2 + \theta\gamma + 2\eta\mu)\mathbb{E}[\bar{Z}_2]^2 + \mu(2\gamma^2 + 2\theta\gamma + \sigma_2\theta)\mathbb{E}[\bar{Z}_2] + \gamma\mu^2}{[(\gamma + \omega_0)(\gamma\omega_0 + \sigma_2\theta) - \eta\mathbb{E}[\bar{Z}_2]\sigma_2\theta]^2} \quad (\text{S49})$$

Given that $\frac{d}{d\eta} \text{CV}[\bar{X}]^2 \geq 0$, it follows that the coefficient of variation for a specified expected value is a monotonically increasing function of the sequestration rate η . Consequently, the LNA reflects the trend observed in the simulations depicted in Fig. 5, showing that increasing η leads to a higher noise level in the output.

The second observation pertains to the connection of the sAIF controller with the filtered proportional controller. Indeed, observe that for small η , from Equation (S47), we have

$$\text{CV}[\bar{X}]^2 \approx \frac{1}{\mathbb{E}[\bar{X}]} \left[1 + \frac{\sigma_2\theta(\sigma_2 - \omega_0)}{(\gamma + \omega_0)(\gamma\omega_0 + \sigma_2\theta)} \right] \quad \text{with} \quad \omega_0 = \frac{\mu}{h^{-1}(\gamma\mathbb{E}[\bar{X}])}. \quad (\text{S50})$$

When the degradation rate δ of \mathbf{Z}_2 in the filtered proportional controller is set equal to the cutoff frequency of the sAIF controller with small η , namely $\delta \triangleq \omega_0 = \mu/h^{-1}(\gamma\mathbb{E}[\bar{X}])$, Equation (S50) becomes identical to Equation (S42). This alignment underscores that in scenarios where η is very small, the sAIF controller mimics the behavior of the filtered proportional controller with respect to CV, similar to observations in the deterministic framework. Consequently, the minimum CV achievable by the sAIF controller is constrained by its hidden proportional component - an observation that is seen in the simulations of Fig. 5.

To explicitly connect the CV with the deterministic framework, we recall from Equation (S36) that

$$\begin{cases} K_P = \frac{\sigma_2\theta}{\omega_0} \implies \sigma_2 = \frac{K_P\omega_0}{\theta} \\ K_I = \frac{\eta\mathbb{E}[\bar{Z}_2]\sigma_2}{\omega_0} \implies \eta\mathbb{E}[\bar{Z}_2] = \frac{\theta K_I}{K_P}. \end{cases} \quad (\text{S51})$$

Substituting for σ_2 and $\eta\mathbb{E}[\bar{Z}_2]$ in Equation (S47) yields

$$\text{CV}[\bar{X}]^2 \approx \frac{1}{\mathbb{E}[\bar{X}]} \left[1 + \frac{K_P\omega_0 \left(\frac{K_P}{\theta} - 1 \right) + K_I(\omega_0 + \gamma + \theta)}{(\gamma + \omega_0)(\gamma + K_P) - \theta K_I} \right] \geq \frac{1}{\mathbb{E}[\bar{X}]} \left[1 + \frac{K_P\omega_0 \left(\frac{K_P}{\theta} - 1 \right)}{(\gamma + \omega_0)(\gamma + K_P)} \right], \quad (\text{S52})$$

where the lower bound is exactly the CV corresponding to the proportional component given in Equation (S43) which is achieved by setting the integral gain K_I to zero.

S6 Non-Ideal Conditions: Dilution Effects

In this section, we examine the properties of the various controllers while considering the effects of dilution on the controller species.

S6.1 Steady-State Sensitivities in the Deterministic Setting

Consider the closed-loop configuration shown in Fig. 2(a), which consists of an arbitrary regulated network—referred to as the process \mathcal{P}_Δ —subject to a constant disturbance Δ . The system’s input and output are denoted by u and y , respectively, with y potentially representing a species concentration, such as x_L , as an example. The feedback controller, denoted by \mathcal{C} , takes the output y as its input and generates the control signal u , which is fed back to the process. Let x and z be two nonnegative vectors representing the internal states of the regulated network and the controller, respectively. The deterministic dynamics of the closed-loop system are described by the following set of nonlinear differential-algebraic equations

$$\begin{aligned} \text{Process: } y = \mathcal{P}_\Delta(u) &\iff \begin{cases} \dot{x} = f_\Delta(x, u), \\ y = g_\Delta(x, u), \end{cases} \\ \text{Controller: } u = \mathcal{C}(y) &\iff \begin{cases} \dot{z} = \psi(z, y), \\ u = h(z), \end{cases} \end{aligned} \quad (\text{S53})$$

where f_Δ , g_Δ , ψ , and h are continuously differentiable functions defined on the positive orthant. Observe that here u is a function of z only.

Definitions. The set of feasible inputs \mathbb{U} is defined as the range of h over the positive orthant, i.e.,

$$\mathbb{U} \triangleq \{\bar{u} \geq 0 : \exists \bar{z} \geq 0 \text{ with } \bar{u} = h(\bar{z})\}. \quad (\text{S54})$$

The set of admissible setpoints of the process \mathcal{P}_Δ with disturbance Δ over the set of feasible inputs \mathbb{U} is denoted by $\mathcal{R}(\mathcal{P}_\Delta, \mathbb{U})$ with

$$\mathcal{R}(\mathcal{P}_\Delta, \mathbb{U}) \triangleq \{\bar{y} \geq 0 : \exists \bar{u} \in \mathbb{U}, \bar{x} \geq 0 \text{ with } f_\Delta(\bar{x}, \bar{u}) = 0 \text{ and } \bar{y} = g_\Delta(\bar{x}, \bar{u})\}. \quad (\text{S55})$$

The steady-state input/output maps of the process and the controller are expressed as

$$\begin{aligned} \text{Process: } \bar{y} = \bar{\mathcal{P}}_\Delta(\bar{u}) &\iff \begin{cases} 0 = f_\Delta(\bar{x}, \bar{u}), \\ \bar{y} = g_\Delta(\bar{x}, \bar{u}), \end{cases} \\ \text{Controller: } \bar{u} = \bar{\mathcal{C}}(\bar{y}) &\iff \begin{cases} 0 = \psi(\bar{z}, \bar{y}), \\ \bar{u} = h(\bar{z}), \end{cases} \end{aligned} \quad (\text{S56})$$

where we assume for simplicity that the algebraic equations $f_\Delta(\bar{x}, \bar{u}) = 0$ and $\psi(\bar{z}, \bar{y}) = 0$ have unique non-negative solutions \bar{x} and \bar{z} for a given \bar{u} and \bar{y} , respectively. Finally, the network \mathcal{P}_Δ is strictly monotonic if $\bar{\mathcal{P}}'_\Delta(\bar{u})$ does not change sign for all $\bar{u} \geq 0$, and the closed loop is said to operate in a negative feedback configuration if \mathcal{P}_Δ and \mathcal{C} have opposite monotonicity or $\bar{\mathcal{P}}'_\Delta(\bar{u})\bar{\mathcal{C}}'(\bar{y}) \leq 0$.

S6.1.1 Comparison Between Non-Ideal sAIF and Filtered Proportional Controllers

We are now ready to prove Theorem 1 which is repeated here for convenience.

Theorem 1. *For any strictly monotonic regulated network under a constant disturbance Δ , operating in negative feedback with either a non-ideal sAIF or filtered proportional (fP) controller, assume identical dilution rate δ and strictly monotonic actuation mechanisms h_s for both controllers (see Fig. 6(a)). At any desired steady-state output $\bar{x}_L = r$, the steady-state sensitivity to the disturbance satisfies*

$$\left| \frac{\partial \bar{x}_L}{\partial \Delta} \right|^{sAIF} < \left| \frac{\partial \bar{x}_L}{\partial \Delta} \right|^{fP}.$$

Moreover, if either μ or θ is fixed and the other tuned to maintain $\bar{x}_L = r$, the sensitivity strictly decreases as the sequestration rate η increases.

Proof. Consider an arbitrary process \mathcal{P}_Δ infiltrated by a constant disturbance Δ , and whose input and output are denoted by u and y , respectively. The dynamics of the closed-loop systems with either the non-ideal sAIF controller \mathcal{C}_s or the filtered proportional controller \mathcal{C}_p are given by the following equations:

$$\begin{aligned}
 \text{Process:} \quad y = \mathcal{P}_\Delta(u) \quad &\iff \quad \begin{cases} \dot{x} = f_\Delta(x, u) \\ y = g_\Delta(x, u) \end{cases} \\
 \text{Non-Ideal sAIF Controller:} \quad u = \mathcal{C}_s(y) \quad &\iff \quad \begin{cases} \dot{z}_1 = \mu - \eta z_1 z_2 - \delta z_1 \\ \dot{z}_2 = \theta_s y - \eta z_1 z_2 - \delta z_2 \\ u = h_s(z_2) \end{cases} \\
 \text{fP Controller:} \quad u = \mathcal{C}_p(y) \quad &\iff \quad \begin{cases} \dot{z}_2 = \theta_p y - \delta z_2 \\ u = h_s(z_2). \end{cases}
 \end{aligned} \tag{S57}$$

Here, f_Δ, g_Δ , and h_s are continuously differentiable functions, with h_s being strictly monotonic. Observe that the dilution rate δ and the actuation mechanism h_s are the same for both controllers.

For a given disturbance Δ and desired admissible steady-state output $\bar{y} \in \mathcal{R}(\mathcal{P}_\Delta, \mathbb{U})$, there exists a $\bar{u} \in \mathbb{U}$ such that $\bar{y} = \bar{\mathcal{P}}_\Delta(\bar{u})$. Furthermore, since $\bar{u} \in \mathbb{U}$, there exists a $\bar{z}_2 \geq 0$ such that $h_s(\bar{z}_2) = \bar{u}$. Therefore, we have

$$\bar{y} = \bar{\mathcal{P}}_\Delta \circ h_s(\bar{z}_2) \implies \bar{z}_2 = h_s^{-1} \circ \bar{\mathcal{P}}_\Delta^{-1}(\bar{y}) \triangleq F(\bar{y}, \Delta), \tag{S58}$$

where the inverses exist due to the strict monotonicity assumptions. These expressions are valid for both controllers. Next, we write a single nonlinear algebraic equation for \bar{y} for both controllers. The following calculations encapsulate both cases with $(\theta, \eta) = (\theta_s, \text{positive})$ for the sAIF controller, while $(\theta, \eta) = (\theta_p, 0)$ for the fP controller. Dropping the bar for convenience, we have

$$\begin{cases} \mu - \eta z_1 z_2 - \delta z_1 = 0 \\ \theta y - \eta z_1 z_2 - \delta z_2 = 0 \end{cases} \implies \eta \delta z_2^2 + [\eta(\mu - \theta y) + \delta^2] z_2 - \delta \theta y = 0 \quad \text{with} \quad z_2 = F(y, \Delta). \tag{S59}$$

The sensitivity of the steady-state output with respect to disturbances can be implicitly calculated as follows

$$2\eta \delta z_2 \frac{\partial z_2}{\partial \Delta} - \eta \theta \frac{\partial y}{\partial \Delta} z_2 + [\eta(\mu - \theta y) + \delta^2] \frac{\partial z_2}{\partial \Delta} - \delta \theta \frac{\partial y}{\partial \Delta} = 0 \quad \text{with} \quad \begin{cases} z_2 = F(y, \Delta) \\ \frac{\partial z_2}{\partial \Delta} = \frac{\partial F(y, \Delta)}{\partial y} \frac{\partial y}{\partial \Delta} + \frac{\partial F(y, \Delta)}{\partial \Delta}. \end{cases} \tag{S60}$$

We proceed with some algebraic manipulations to obtain an expression for $\frac{\partial y}{\partial \Delta}$

$$\begin{aligned}
 &[2\eta \delta z_2 + \delta^2 + \eta(\mu - \theta y)] \frac{\partial z_2}{\partial \Delta} - \theta(\eta z_2 + \delta) \frac{\partial y}{\partial \Delta} = 0 \\
 &[\delta(\eta z_2 + \delta) + \eta(\mu - \theta y + \delta z_2)] \frac{\partial z_2}{\partial \Delta} - \theta(\eta z_2 + \delta) \frac{\partial y}{\partial \Delta} = 0 \\
 &[\delta(\eta z_2 + \delta) + \eta \delta z_1] \frac{\partial z_2}{\partial \Delta} - \theta(\eta z_2 + \delta) \frac{\partial y}{\partial \Delta} = 0 \\
 &\left[\delta(\eta z_2 + \delta) + \eta \frac{\mu \delta}{\eta z_2 + \delta} \right] \frac{\partial z_2}{\partial \Delta} - \theta(\eta z_2 + \delta) \frac{\partial y}{\partial \Delta} = 0 \\
 &\delta \left[1 + \frac{\eta \mu}{(\eta z_2 + \delta)^2} \right] \frac{\partial z_2}{\partial \Delta} - \theta \frac{\partial y}{\partial \Delta} = 0 \\
 &\delta \left[1 + \frac{\eta \mu}{(\eta z_2 + \delta)^2} \right] \left[\frac{\partial F(y, \Delta)}{\partial y} \frac{\partial y}{\partial \Delta} + \frac{\partial F(y, \Delta)}{\partial \Delta} \right] - \theta \frac{\partial y}{\partial \Delta} = 0 \\
 &\left[\delta \left(1 + \frac{\eta \mu}{(\eta z_2 + \delta)^2} \right) \frac{\partial F(y, \Delta)}{\partial y} - \theta \right] \frac{\partial y}{\partial \Delta} = -\delta \left(1 + \frac{\eta \mu}{(\eta z_2 + \delta)^2} \right) \frac{\partial F(y, \Delta)}{\partial \Delta} \\
 &\implies \frac{\partial y}{\partial \Delta} = -\frac{\frac{\partial F(y, \Delta)}{\partial \Delta}}{\frac{\partial F(y, \Delta)}{\partial y} - \frac{\theta}{\delta} \frac{1}{1 + \frac{\eta \mu}{(\eta z_2 + \delta)^2}}}.
 \end{aligned} \tag{S61}$$

Note that

$$\frac{\partial F(y, \Delta)}{\partial y} = \frac{1}{h_s' (h_s^{-1} \circ \bar{\mathcal{P}}_\Delta^{-1}(y)) \bar{\mathcal{P}}_\Delta' (\bar{\mathcal{P}}_\Delta^{-1}(y))} < 0, \tag{S62}$$

since we have a negative feedback configuration. Therefore, we have

$$\left| \frac{\partial \bar{y}}{\partial \Delta} \right| = \frac{\left| \frac{\partial F(\bar{y}, \Delta)}{\partial \Delta} \right|}{\left| \frac{\partial F(\bar{y}, \Delta)}{\partial \bar{y}} \right| + \frac{\theta}{\delta} \frac{1}{1 + \frac{1}{(\eta F(\bar{y}, \Delta) + \delta)^2}}}. \quad (\text{S63})$$

To fix the setpoint $\bar{y} = r$ at some disturbance Δ_0 , the parameters μ, θ and η should satisfy

$$\eta \delta \bar{z}_2^2 + [\eta(\mu - \theta \bar{y}) + \delta^2] \bar{z}_2 - \delta \theta \bar{y} = 0 \implies \theta = \frac{F(r, \Delta_0)}{r} \left[\delta + \frac{\eta \mu}{\eta F(r, \Delta_0) + \delta} \right]. \quad (\text{S64})$$

Therefore the sensitivity becomes

$$\left| \frac{\partial \bar{y}}{\partial \Delta} \right|_{(\bar{y}, \Delta) = (r, \Delta_0)} = \frac{\left| \frac{\partial F(r, \Delta_0)}{\partial \Delta} \right|}{\left| \frac{\partial F(r, \Delta_0)}{\partial \bar{y}} \right| + \frac{F(r, \Delta_0)}{r} \frac{1 + \frac{1}{\delta} \frac{\eta \mu}{\eta F(r, \Delta_0) + \delta}}{1 + \frac{1}{(\eta F(r, \Delta_0) + \delta)^2}}}. \quad (\text{S65})$$

As such, for the cases of the non-ideal sAIF and filtered proportional controllers, we obtain:

$$\begin{aligned} \text{non-ideal sAIF: } \left| \frac{\partial \bar{y}}{\partial \Delta} \right|_{(\bar{y}, \Delta) = (r, \Delta_0)} &= \frac{\left| \frac{\partial F(r, \Delta_0)}{\partial \Delta} \right|}{\left| \frac{\partial F(r, \Delta_0)}{\partial \bar{y}} \right| + \phi_s} \quad \text{with } \phi_s \triangleq \frac{F(r, \Delta_0)}{r} \frac{1 + \frac{1}{\delta} \frac{\eta \mu}{\eta F(r, \Delta_0) + \delta}}{1 + \frac{1}{(\eta F(r, \Delta_0) + \delta)^2}} \\ \text{fP: } \left| \frac{\partial \bar{y}}{\partial \Delta} \right|_{(\bar{y}, \Delta) = (r, \Delta_0)} &= \frac{\left| \frac{\partial F(r, \Delta_0)}{\partial \Delta} \right|}{\left| \frac{\partial F(r, \Delta_0)}{\partial \bar{y}} \right| + \phi_p} \quad \text{with } \phi_p \triangleq \frac{F(r, \Delta_0)}{r}. \end{aligned} \quad (\text{S66})$$

Observe that

$$\phi_s - \phi_p = \frac{F(r, \Delta_0)}{r} \left[\frac{1 + \frac{1}{\delta} \frac{\eta \mu}{\eta F(r, \Delta_0) + \delta}}{1 + \frac{1}{(\eta F(r, \Delta_0) + \delta)^2}} - 1 \right] = \frac{\eta F^2(r, \Delta_0)}{r \delta} \frac{\frac{\eta \mu}{(\eta F(r, \Delta_0) + \delta)^2}}{1 + \frac{1}{(\eta F(r, \Delta_0) + \delta)^2}} > 0, \quad (\text{S67})$$

and therefore the sensitivity in the case of the non-ideal sAIF controller is lower than that in the case of the filtered proportional controller.

Next, we analyze the monotonicity of $\left| \frac{\partial \bar{y}}{\partial \Delta} \right|$ with respect to η . We consider two scenarios.

Scenario 1. Fix θ, δ , the steady-state output level $\bar{y} = r$ and the disturbance level $\Delta = \Delta_0$. Then as η is adjusted, μ should be tuned to maintain the steady-state output level at $\bar{y} = r$ according to the following equation

$$\eta \delta \bar{z}_2^2 + [\eta(\mu - \theta \bar{y}) + \delta^2] \bar{z}_2 - \delta \theta \bar{y} = 0 \implies \mu = \frac{1}{\eta F(r, \Delta_0)} (\eta F(r, \Delta_0) + \delta) (\theta r - \delta F(r, \Delta_0)). \quad (\text{S68})$$

Note that $\theta \bar{y} - \delta \bar{z}_2 = \eta \bar{z}_1 \bar{z}_2 \geq 0$, and thus $\theta r - \delta F(r, \Delta_0) \geq 0$ for any admissible fixed point. In this scenario, we substitute for μ in Equation (S63) to yield the sensitivity given by

$$\left| \frac{\partial \bar{y}}{\partial \Delta} \right|_{(\bar{y}, \Delta) = (r, \Delta_0)} = \frac{\left| \frac{\partial F(r, \Delta_0)}{\partial \Delta} \right|}{\left| \frac{\partial F(r, \Delta_0)}{\partial \bar{y}} \right| + \frac{\theta}{\delta} \frac{1}{1 + \frac{1}{F(r, \Delta_0)} \frac{\theta r - \delta F(r, \Delta_0)}{\eta F(r, \Delta_0) + \delta}}}. \quad (\text{S69})$$

Clearly, in this scenario the sensitivity is a decreasing function in η .

Scenario 2. Fix μ, δ , the steady-state output level $\bar{y} = r$ and the disturbance level $\Delta = \Delta_0$. Then as η is adjusted, θ should be tuned to maintain the steady-state output level at $\bar{y} = r$ according to the following equation

$$\eta \delta \bar{z}_2^2 + [\eta(\mu - \theta \bar{y}) + \delta^2] \bar{z}_2 - \delta \theta \bar{y} = 0 \implies \theta = \frac{F(r, \Delta_0)}{r} \left[\delta + \frac{\eta \mu}{\eta F(r, \Delta_0) + \delta} \right]. \quad (\text{S70})$$

In this scenario, we substitute for θ in Equation (S63) to yield the sensitivity given by

$$\left| \frac{\partial \bar{y}}{\partial \Delta} \right|_{(\bar{y}, \Delta) = (r, \Delta_0)} = \frac{\left| \frac{\partial F(r, \Delta_0)}{\partial \Delta} \right|}{\left| \frac{\partial F(r, \Delta_0)}{\partial \bar{y}} \right| + \frac{F(r, \Delta_0)}{r} \frac{1 + \frac{1}{\delta} \frac{\eta \mu}{\eta F(r, \Delta_0) + \delta}}{1 + \frac{1}{(\eta F(r, \Delta_0) + \delta)^2}}}. \quad (\text{S71})$$

Note that

$$\phi(\eta) \triangleq \frac{1 + \frac{1}{\delta} \frac{\eta \mu}{\eta F(r, \Delta_0) + \delta}}{1 + \frac{1}{(\eta F(r, \Delta_0) + \delta)^2}} \implies \phi'(\eta) = \frac{\eta \mu F(r, \Delta_0)}{\delta} \frac{\eta \mu + 2\delta [\eta F(r, \Delta_0) + \delta]}{[\eta \mu + (\eta F(r, \Delta_0) + \delta)^2]^2} \geq 0. \quad (\text{S72})$$

Therefore, in this scenario the sensitivity is also a decreasing function in η . \square

A numerical demonstration of this result is presented in Fig. S6, highlighting the steady-state errors caused by a disturbance and comparing the performance of the non-ideal sAIF controller with that of the filtered proportional controller.

S6.1.2 Comparison between Non-Ideal sAIF and rAIF Controllers

We are now ready to prove Theorem 2 which is repeated here for convenience.

Theorem 2. *For any strictly monotonic regulated network under a constant disturbance Δ , operating in negative feedback with either a non-ideal sAIF or rAIF controller, assume identical controller parameters μ, θ, η , and δ for both controllers (see Fig. 6(a)). At any fixed desired steady-state output \bar{x}_L , the steady-state sensitivities to the disturbance satisfy:*

$$\begin{cases} \left| \frac{\partial \bar{x}_L}{\partial \Delta} \right|^{sAIF} < \left| \frac{\partial \bar{x}_L}{\partial \Delta} \right|^{rAIF} & \text{if } \bar{x}_L > \frac{\mu}{\theta} - \frac{\delta^2}{\eta\theta}, \\ \left| \frac{\partial \bar{x}_L}{\partial \Delta} \right|^{sAIF} > \left| \frac{\partial \bar{x}_L}{\partial \Delta} \right|^{rAIF} & \text{if } \bar{x}_L < \frac{\mu}{\theta} - \frac{\delta^2}{\eta\theta}, \end{cases}$$

assuming the absolute value of the actuation gains of both controllers are matched (see Fig. 6(c)).

Proof. Consider an arbitrary process \mathcal{P}_Δ infiltrated by a constant disturbance Δ , and whose input and output are denoted by u and y , respectively. The dynamics of the closed-loop systems with either the non-ideal sAIF controller \mathcal{C}_s or rAIF controllers \mathcal{C}_r are given by the following equations:

$$\begin{aligned} \text{Process: } y = \mathcal{P}_\Delta(u) &\iff \begin{cases} \dot{x} = f_\Delta(x, u) \\ y = g_\Delta(x, u) \end{cases} \\ \text{Non-Ideal sAIF Controller: } u = \mathcal{C}_s(y) &\iff \begin{cases} \dot{z}_1^s = \mu - \eta z_1^s z_2^s - \delta z_1^s \\ \dot{z}_2^s = \theta y - \eta z_1^s z_2^s - \delta z_2^s \\ u = h_s(z_2^s) \end{cases} \\ \text{Non-Ideal rAIF Controller: } u = \mathcal{C}_r(y) &\iff \begin{cases} \dot{z}_1^r = \mu - \eta z_1^r z_2^r - \delta z_1^r \\ \dot{z}_2^r = \theta y - \eta z_1^r z_2^r - \delta z_2^r \\ u = h_r(z_1^r) \end{cases} \end{aligned} \quad (S73)$$

Here, f_Δ, g_Δ, h_s and h_r are continuously differentiable functions, with h_s and h_r being strictly monotonic. Observe that all controller parameters μ, θ, η and δ are kept the same for both controllers.

Let \mathbb{U}_s and \mathbb{U}_r be the sets of feasible inputs associated with h_s and h_r , respectively. For a given disturbance Δ and desired steady-state output \bar{y} that is admissible for both controllers, i.e. $\bar{y} \in \mathcal{R}(\mathcal{P}_\Delta, \mathbb{U}_s) \cap \mathcal{R}(\mathcal{P}_\Delta, \mathbb{U}_r)$, there exists a $\bar{u} \in \mathbb{U}_s \cap \mathbb{U}_r$ such that $\bar{y} = \bar{\mathcal{P}}_\Delta(\bar{u})$. Furthermore, since $\bar{u} \in \mathbb{U}_s \cap \mathbb{U}_r$, there exists a $\bar{z}_2^s \geq 0$ such that $h_s(\bar{z}_2^s) = \bar{u}$ and a $\bar{z}_1^r \geq 0$ such that $h_r(\bar{z}_1^r) = \bar{u}$. Therefore, we have

$$\bar{u} = h_s(\bar{z}_2^s) = h_r(\bar{z}_1^r) = \bar{\mathcal{P}}_\Delta^{-1}(\bar{y}), \quad (S74)$$

where the inverse exists due to the strict monotonicity assumption. Furthermore, at steady state, the following equations are satisfied

$$\begin{cases} \mu - \eta \bar{z}_1^s \bar{z}_2^s - \delta \bar{z}_1^s = 0 \\ \theta \bar{y} - \eta \bar{z}_1^s \bar{z}_2^s - \delta \bar{z}_2^s = 0 \end{cases} \quad \text{and} \quad \begin{cases} \mu - \eta \bar{z}_1^r \bar{z}_2^r - \delta \bar{z}_1^r = 0 \\ \theta \bar{y} - \eta \bar{z}_1^r \bar{z}_2^r - \delta \bar{z}_2^r = 0. \end{cases} \quad (S75)$$

Then we have

$$\begin{aligned} \bar{z}_1^r &= \bar{z}_1^s = \frac{1}{2} \left[\frac{\mu - \theta \bar{y}}{\delta} - \frac{\delta}{\eta} + \sqrt{\left(\frac{\mu - \theta \bar{y}}{\delta} - \frac{\delta}{\eta} \right)^2 + \frac{4\mu}{\eta}} \right] \triangleq \bar{z}_1 \\ \bar{z}_2^r &= \bar{z}_2^s = \frac{1}{2} \left[\frac{\theta \bar{y} - \mu}{\delta} - \frac{\delta}{\eta} + \sqrt{\left(\frac{\theta \bar{y} - \mu}{\delta} - \frac{\delta}{\eta} \right)^2 + \frac{4\theta \bar{y}}{\eta}} \right] \triangleq \bar{z}_2. \end{aligned} \quad (S76)$$

Therefore, having the same setpoint and actuation gains for both controllers are translated to the following equations

$$\begin{cases} \bar{z}_1^s = \bar{z}_1^r \triangleq \bar{z}_1 \\ \bar{z}_2^s = \bar{z}_2^r \triangleq \bar{z}_2, \end{cases} \quad \begin{cases} \bar{z}_1 = h_r^{-1} \circ \bar{\mathcal{P}}_\Delta^{-1}(\bar{y}) \triangleq F_r(\bar{y}, \Delta) \\ \bar{z}_2 = h_s^{-1} \circ \bar{\mathcal{P}}_\Delta^{-1}(\bar{y}) \triangleq F_s(\bar{y}, \Delta), \end{cases} \quad \text{and} \quad |h_r'(\bar{z}_1)| = |h_s'(\bar{z}_2)| = G. \quad (S77)$$

Next, we calculate the steady-state sensitivities of the output with respect to the disturbance for both controllers. For the rAIF controller we proceed by dropping the bar for convenience. We have

$$\begin{cases} \mu - \eta z_1 z_2 - \delta z_1 = 0 \\ \theta y - \eta z_1 z_2 - \delta z_2 = 0 \end{cases} \implies \eta \delta z_1^2 - [\eta(\mu - \theta y) - \delta^2] z_1 - \delta \mu = 0 \quad \text{with} \quad z_1 = F_r(y, \Delta). \quad (\text{S78})$$

The sensitivity of the steady-state output with respect to disturbances can be implicitly calculated as follows

$$2\eta \delta z_1 \frac{\partial z_1}{\partial \Delta} + \eta \theta \frac{\partial y}{\partial \Delta} z_1 - [\eta(\mu - \theta y) - \delta^2] \frac{\partial z_1}{\partial \Delta} = 0 \quad \text{with} \quad \begin{cases} z_1 = F_r(y, \Delta) \\ \frac{\partial z_1}{\partial \Delta} = \frac{\partial F_r(y, \Delta)}{\partial y} \frac{\partial y}{\partial \Delta} + \frac{\partial F_r(y, \Delta)}{\partial \Delta} \end{cases}. \quad (\text{S79})$$

We proceed with some algebraic manipulations to obtain an expression for $\frac{\partial y}{\partial \Delta}$

$$\begin{aligned} [2\eta \delta z_1 + \delta^2 - \eta(\mu - \theta y)] \frac{\partial z_1}{\partial \Delta} + \eta \theta z_1 \frac{\partial y}{\partial \Delta} &= 0 \\ [\delta(\eta z_1 + \delta) - \eta(\mu - \theta y - \delta z_1)] \frac{\partial z_1}{\partial \Delta} + \eta \theta z_1 \frac{\partial y}{\partial \Delta} &= 0 \\ [\delta(\eta z_1 + \delta) + \eta \delta z_2] \frac{\partial z_1}{\partial \Delta} + \eta \theta z_1 \frac{\partial y}{\partial \Delta} &= 0 \\ \left[\delta(\eta z_1 + \delta) + \eta \frac{\delta \theta y}{\eta z_1 + \delta} \right] \frac{\partial z_1}{\partial \Delta} + \eta \theta z_1 \frac{\partial y}{\partial \Delta} &= 0 \\ \delta \left[1 + \frac{\eta \theta y}{(\eta z_1 + \delta)^2} \right] \frac{\partial z_1}{\partial \Delta} + \frac{\eta \theta z_1}{\eta z_1 + \delta} \frac{\partial y}{\partial \Delta} &= 0 \\ \delta \left[1 + \frac{\eta \theta y}{(\eta z_1 + \delta)^2} \right] \left[\frac{\partial F_r(y, \Delta)}{\partial y} \frac{\partial y}{\partial \Delta} + \frac{\partial F_r(y, \Delta)}{\partial \Delta} \right] + \frac{\eta \theta z_1}{\eta z_1 + \delta} \frac{\partial y}{\partial \Delta} &= 0 \\ \left[\delta \left(1 + \frac{\eta \theta y}{(\eta z_1 + \delta)^2} \right) \frac{\partial F_r(y, \Delta)}{\partial y} + \frac{\eta \theta z_1}{\eta z_1 + \delta} \right] \frac{\partial y}{\partial \Delta} &= -\delta \left(1 + \frac{\eta \theta y}{(\eta z_1 + \delta)^2} \right) \frac{\partial F_r(y, \Delta)}{\partial \Delta} \\ \implies \frac{\partial y}{\partial \Delta} &= -\frac{\frac{\partial F_r(y, \Delta)}{\partial \Delta}}{\frac{\partial F_r(y, \Delta)}{\partial y} + \frac{\theta}{\delta} \frac{\eta z_1 (\eta z_1 + \delta)}{(\eta z_1 + \delta)^2 + \eta \theta y}}. \end{aligned} \quad (\text{S80})$$

Note that

$$\frac{\partial F_r(y, \Delta)}{\partial y} = \frac{1}{h_r' (h_r^{-1} \circ \bar{P}_\Delta^{-1}(y)) \bar{P}_\Delta' (\bar{P}_\Delta^{-1}(y))} > 0, \quad (\text{S81})$$

since we have a negative feedback configuration. Therefore, we have

$$\left| \frac{\partial \bar{y}}{\partial \Delta} \right| = \frac{\left| \frac{\partial F_r(y, \Delta)}{\partial \Delta} \right|}{\left| \frac{\partial F_r(y, \Delta)}{\partial y} \right| + \frac{\theta}{\delta} \frac{\eta z_1 (\eta z_1 + \delta)}{(\eta z_1 + \delta)^2 + \eta \theta y}}. \quad (\text{S82})$$

The calculations for the sAIF controller was already carried out in the proof of Theorem 1, and so the results are summarized in the following equations

$$\begin{aligned} \text{sAIF: } \left| \frac{\partial \bar{y}}{\partial \Delta} \right|_{(\bar{y}, \Delta) = (r, \Delta_0)} &= \frac{\left| \frac{\partial F_s(r, \Delta_0)}{\partial \Delta} \right|}{\left| \frac{\partial F_s(r, \Delta_0)}{\partial \bar{y}} \right| + \phi_s} \quad \text{with} \quad \phi_s \triangleq \frac{\theta}{\delta} \frac{1}{1 + \frac{\eta \mu}{(\eta \bar{z}_2 + \delta)^2}} \\ \text{rAIF: } \left| \frac{\partial \bar{y}}{\partial \Delta} \right|_{(\bar{y}, \Delta) = (r, \Delta_0)} &= \frac{\left| \frac{\partial F_r(r, \Delta_0)}{\partial \Delta} \right|}{\left| \frac{\partial F_r(r, \Delta_0)}{\partial \bar{y}} \right| + \phi_r} \quad \text{with} \quad \phi_r \triangleq \frac{\theta}{\delta} \frac{\eta \bar{z}_1 (\eta \bar{z}_1 + \delta)}{(\eta \bar{z}_1 + \delta)^2 + \eta \theta \bar{y}}. \end{aligned} \quad (\text{S83})$$

First, observe that

$$\begin{aligned}
\left| \frac{\partial F_r(r, \Delta)}{\partial y} \right| &= \left| \frac{1}{h'_r(h_r^{-1} \circ \bar{\mathcal{P}}_\Delta^{-1}(r)) \bar{\mathcal{P}}'_\Delta(\bar{\mathcal{P}}_\Delta^{-1}(r))} \right| \\
&= \left| \frac{1}{h'_r(\bar{z}_1) \bar{\mathcal{P}}'_\Delta(\bar{\mathcal{P}}_\Delta^{-1}(r))} \right| \\
&= \left| \frac{1}{h'_s(\bar{z}_2) \bar{\mathcal{P}}'_\Delta(\bar{\mathcal{P}}_\Delta^{-1}(r))} \right| \\
&= \left| \frac{1}{h'_s(h_s^{-1} \circ \bar{\mathcal{P}}_\Delta^{-1}(r)) \bar{\mathcal{P}}'_\Delta(\bar{\mathcal{P}}_\Delta^{-1}(r))} \right| = \left| \frac{\partial F_s(r, \Delta_0)}{\partial y} \right|,
\end{aligned} \tag{S84}$$

and similarly

$$\left| \frac{\partial F_r(r, \Delta_0)}{\partial \Delta} \right| = \left| \frac{\partial F_s(r, \Delta_0)}{\partial \Delta} \right|. \tag{S85}$$

Hence, we are left with comparing ϕ_s and ϕ_r . We have

$$\begin{aligned}
\phi_r - \phi_s &= \frac{\theta}{\delta} \left[\frac{\eta \bar{z}_1(\eta \bar{z}_1 + \delta)}{(\eta \bar{z}_1 + \delta)^2 + \eta \theta \bar{y}} - \frac{1}{1 + \frac{\eta \mu}{(\eta \bar{z}_2 + \delta)^2}} \right] \\
&= \frac{\theta}{\delta} \left[\frac{\eta \bar{z}_1}{\eta \bar{z}_1 + \delta + \frac{\eta \theta \bar{y}}{\eta \bar{z}_1 + \delta}} - \frac{\eta \bar{z}_2 + \delta}{\eta \bar{z}_2 + \delta + \frac{\eta \mu}{\eta \bar{z}_2 + \delta}} \right].
\end{aligned} \tag{S86}$$

But recall that $\bar{z}_1 = \frac{\mu}{\eta \bar{z}_1 + \delta}$ and $\bar{z}_2 = \frac{\theta \bar{y}}{\eta \bar{z}_1 + \delta}$. Then

$$\begin{aligned}
\phi_r - \phi_s &= \frac{\theta}{\delta} \left[\frac{\eta \bar{z}_1}{\eta \bar{z}_1 + \delta + \eta \bar{z}_2} - \frac{\eta \bar{z}_2 + \delta}{\eta \bar{z}_1 + \delta + \eta \bar{z}_1} \right] \\
&= \frac{\theta}{\delta} \frac{\eta(\bar{z}_1 - \bar{z}_2) - \delta}{\eta(\bar{z}_1 + \bar{z}_2) + \delta} \\
&= \frac{\theta}{\delta} \frac{\eta \frac{\mu - \theta \bar{y}}{\delta} - \delta}{\eta(\bar{z}_1 + \bar{z}_2) + \delta} \\
&= \frac{\theta}{\delta^2} \frac{\eta(\mu - \theta \bar{y}) - \delta^2}{\eta(\bar{z}_1 + \bar{z}_2) + \delta}.
\end{aligned} \tag{S87}$$

Hence, $\phi_r > \phi_s$ iff $\bar{y} < \frac{\mu}{\theta} - \frac{\delta^2}{\eta \theta}$. Therefore,

$$\left| \frac{\partial \bar{y}}{\partial \Delta} \right|_{(\bar{y}, \Delta) = (r, \Delta_0)}^{\text{rAIF}} < \left| \frac{\partial \bar{y}}{\partial \Delta} \right|_{(\bar{y}, \Delta) = (r, \Delta_0)}^{\text{sAIF}} \iff \bar{y} < \frac{\mu}{\theta} - \frac{\delta^2}{\eta \theta}. \tag{S88}$$

□

S6.2 Noise Analysis for the Non-Ideal sAIF Controller Using Linear Noise Approximation

Consider the simple birth-death process controlled by the non-ideal sAIF controller depicted in Fig. 6(a). The closed-loop can now be modeled as a SCRN represented by the following stoichiometry matrix and propensity function

$$S = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 & -1 \end{bmatrix}, \quad \lambda(x, z_1, z_2) = [h(z_2) \quad \gamma x \quad \mu \quad \theta x \quad \eta z_1 z_2 \quad \delta z_1 \quad \delta z_2]^T. \tag{S89}$$

The goal here is to derive the sensitivity of the stationary coefficient of variation of the output $\text{CV}[\bar{X}]$ to the sequestration rate η for a fixed setpoint $\mathbb{E}[\bar{X}] = r$. LNA provides algebraic equations that approximate the stationary mean $(\mathbb{E}[\bar{X}], \mathbb{E}[\bar{Z}_1], \mathbb{E}[\bar{Z}_2])$ and covariance $\bar{\Sigma}$ of the closed-loop state vector $[X \quad Z_1 \quad Z_2]^T$ given by

$$\begin{cases} h(\mathbb{E}[\bar{Z}_2]) - \gamma \mathbb{E}[\bar{X}] \approx 0 \\ \mu - \eta \mathbb{E}[\bar{Z}_1] \mathbb{E}[\bar{Z}_2] - \delta \mathbb{E}[\bar{Z}_1] \approx 0 \\ \theta \mathbb{E}[\bar{X}] - \eta \mathbb{E}[\bar{Z}_1] \mathbb{E}[\bar{Z}_2] - \delta \mathbb{E}[\bar{Z}_2] \approx 0 \\ A \bar{\Sigma} + \bar{\Sigma} A^T + W \approx 0, \end{cases} \tag{S90}$$

where $A \triangleq \begin{bmatrix} -\gamma & 0 & -\sigma_2 \\ 0 & -\eta\mathbb{E}[\bar{Z}_2] - \delta & -\eta\mathbb{E}[\bar{Z}_1] \\ \theta & -\eta\mathbb{E}[\bar{Z}_2] & -\eta\mathbb{E}[\bar{Z}_1] - \delta \end{bmatrix}$,
 $W = \begin{bmatrix} h(\mathbb{E}[\bar{Z}_2]) + \gamma\mathbb{E}[\bar{X}] & 0 & 0 \\ 0 & \mu + \eta\mathbb{E}[\bar{Z}_1]\mathbb{E}[\bar{Z}_2] + \delta\mathbb{E}[\bar{Z}_1] & \eta\mathbb{E}[\bar{Z}_1]\mathbb{E}[\bar{Z}_2] \\ 0 & \eta\mathbb{E}[\bar{Z}_1]\mathbb{E}[\bar{Z}_2] & \theta\mathbb{E}[\bar{X}] + \eta\mathbb{E}[\bar{Z}_1]\mathbb{E}[\bar{Z}_2] + \delta\mathbb{E}[\bar{Z}_2] \end{bmatrix}$ and $\sigma_2 \triangleq -h'(\mathbb{E}[\bar{Z}_2])$.
Using the first three equations in Equation (S90) and fixing the stationary output to $\mathbb{E}[\bar{X}] = r$, we can write

$$h(\mathbb{E}[\bar{Z}_2]) = \gamma\mathbb{E}[\bar{X}] \quad \mathbb{E}[\bar{Z}_1] = \frac{\mu}{\eta\mathbb{E}[\bar{Z}_2] + \delta} \quad \text{and} \quad \theta = \frac{\mathbb{E}[\bar{Z}_2]}{r} \left(\delta + \frac{\eta\mu}{\eta\mathbb{E}[\bar{Z}_2] + \delta} \right).$$

Note that the last equation provides a tuning scheme for θ that yields, up to an LNA approximation, a fixed stationary output $\mathbb{E}[\bar{X}] = r$ as η is varied. Hence we can get rid of $h(\mathbb{E}[\bar{Z}_2])$, θ , and $\mathbb{E}[\bar{Z}_1]$ in A and W to express them in terms of r and $\mathbb{E}[\bar{Z}_2]$ as

$$A = \begin{bmatrix} -\gamma & 0 & -\frac{\sigma_2}{\eta\mathbb{E}[\bar{Z}_2] + \delta} \\ 0 & -\eta\mathbb{E}[\bar{Z}_2] - \delta & -\frac{\eta\mu}{\eta\mathbb{E}[\bar{Z}_2] + \delta} \\ \frac{\mathbb{E}[\bar{Z}_2]}{r} \left(\delta + \frac{\eta\mu}{\eta\mathbb{E}[\bar{Z}_2] + \delta} \right) & -\eta\mathbb{E}[\bar{Z}_2] & -\frac{\eta\mu}{\eta\mathbb{E}[\bar{Z}_2] + \delta} - \delta \end{bmatrix}$$

$$W = \begin{bmatrix} 2\gamma r & 0 & 0 \\ 0 & 2\mu & \frac{\eta\mu\mathbb{E}[\bar{Z}_2]}{\eta\mathbb{E}[\bar{Z}_2] + \delta} \\ 0 & \frac{\eta\mu\mathbb{E}[\bar{Z}_2]}{\eta\mathbb{E}[\bar{Z}_2] + \delta} & 2\mathbb{E}[\bar{Z}_2] \left(\frac{\eta\mu}{\eta\mathbb{E}[\bar{Z}_2] + \delta} + \delta \right) \end{bmatrix}.$$

Note that, up to an LNA approximation, $\mathbb{E}[\bar{Z}_2]$ is independent of η when the stationary output is fixed $\mathbb{E}[\bar{X}] = r$. Using the expressions for A and W , the system of linear equations $A\bar{\Sigma} + \bar{\Sigma}A^T + W = 0$ can be solved for $\bar{\Sigma}$. Due to the complexity of the calculations, Matlab's symbolic toolbox is employed to compute $\bar{\Sigma}$, specifically its first entry, which represents the stationary variance of the output, $\text{Var}[\bar{X}]$. The MATLAB code can be found at the following Github repository <https://github.com/Maurice-Filo/Sensor-Based-Biomolecular-Integral-Controllers>. While the full expression for $\bar{\Sigma}$ is complicated and not presented here, the derivative of the variance with respect to η at $\eta = 0$ is given by:

$$\frac{\partial \text{Var}[\bar{X}]}{\partial \eta} \Big|_{\eta = 0, \mathbb{E}[\bar{X}] = r} = -\frac{\mathbb{E}[\bar{Z}_2]\mu r |h'(\mathbb{E}[\bar{Z}_2])| (\gamma + |h'(\mathbb{E}[\bar{Z}_2])|)}{\delta(\delta + \gamma)^2 (\mathbb{E}[\bar{Z}_2] |h'(\mathbb{E}[\bar{Z}_2])| + \gamma r)} < 0. \quad (\text{S91})$$

This indicates that as η increases from zero (the filtered P controller case) while maintaining a fixed output level, the variance—and consequently the coefficient of variation (CV)—must decrease. This analytical approximation complements the numerical findings in Fig. 6(e), which show a decrease in CV as η increases from zero.

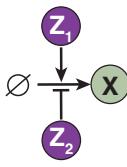
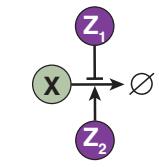
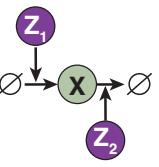
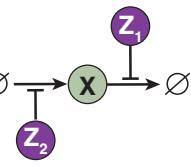
$\begin{array}{c} \text{Z}_1 \xrightarrow{\hspace{1cm}} \text{X} \\ \text{Z}_2 \xrightarrow{\hspace{1cm}} \text{X} \end{array} \quad \frac{\partial u}{\partial z_1} > 0 \quad \frac{\partial u}{\partial z_2} < 0$			
Production 	Removal 	Mixed Production/Removal 	
Additive (Separate Actuation) $u = k_1 z_1 + \frac{\alpha_2}{1 + z_2/\kappa_2}$	$u = - \left(\frac{\alpha_1}{1 + z_1/\kappa_1} + k_2 z_2 \right) \xi(x)$	$u = k_1 z_1 - k_2 z_2 \xi(x)$	$u = - \frac{\alpha_1}{1 + z_1/\kappa_1} \xi(x) + \frac{\alpha_2}{1 + z_2/\kappa_2}$
Multiplicative (Competitive Actuation) $u = \frac{k_1 z_1}{1 + z_2/\kappa_2}$	$u = - \frac{k_2 z_2}{1 + z_1/\kappa_1} \xi(x)$		

Figure S1: Actuation with multiple species. This extends Fig. 2(b) to the case where two controller species \mathbf{Z}_1 and \mathbf{Z}_2 actuate \mathbf{X} positively and negatively, respectively. The implementations can once again be via production and/or removal reactions. Furthermore, two particular classes of functional forms are shown here, where the effects of \mathbf{Z}_1 and \mathbf{Z}_2 enter additively (such as separate promoters for the same gene) or multiplicatively (such as competition over the same promoter).

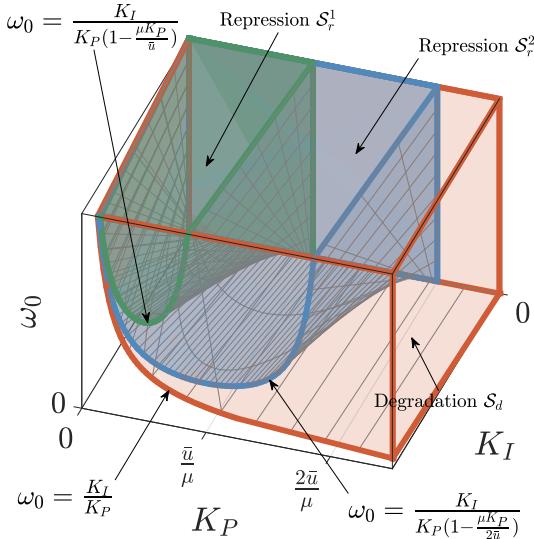


Figure S2: Filtered-PI Coverage. The colored regions depict the achievable PI gains (K_P, K_I) and cutoff frequency ω_0 by adjusting the corresponding biomolecular parameters. These regions are color-coded to represent different negative actuation mechanisms: repression Equation (S13) with and without cooperativity in green ($n = 1$) and blue ($n = 2$), respectively, and degradation Equation (S19) in red. Note that \bar{u} represents the steady-state supporting input necessary to achieve the desired setpoint, and its value depends solely on the plant and the desired setpoint. The span of achievable filtered-PI parameters for repression and degradation actuations are respectively calculated as \mathcal{S}_r^n in Equation (S18) and \mathcal{S}_d in Equation (S22), and they are shown to satisfy $\mathcal{S}_r^n \subset \mathcal{S}_r^{n+1} \subset \mathcal{S}_d$. This demonstrates that degradation provides greater tuning flexibility than repression actuation. It also demonstrates that cooperativity helps in expanding the achievable gains and cutoff frequency.

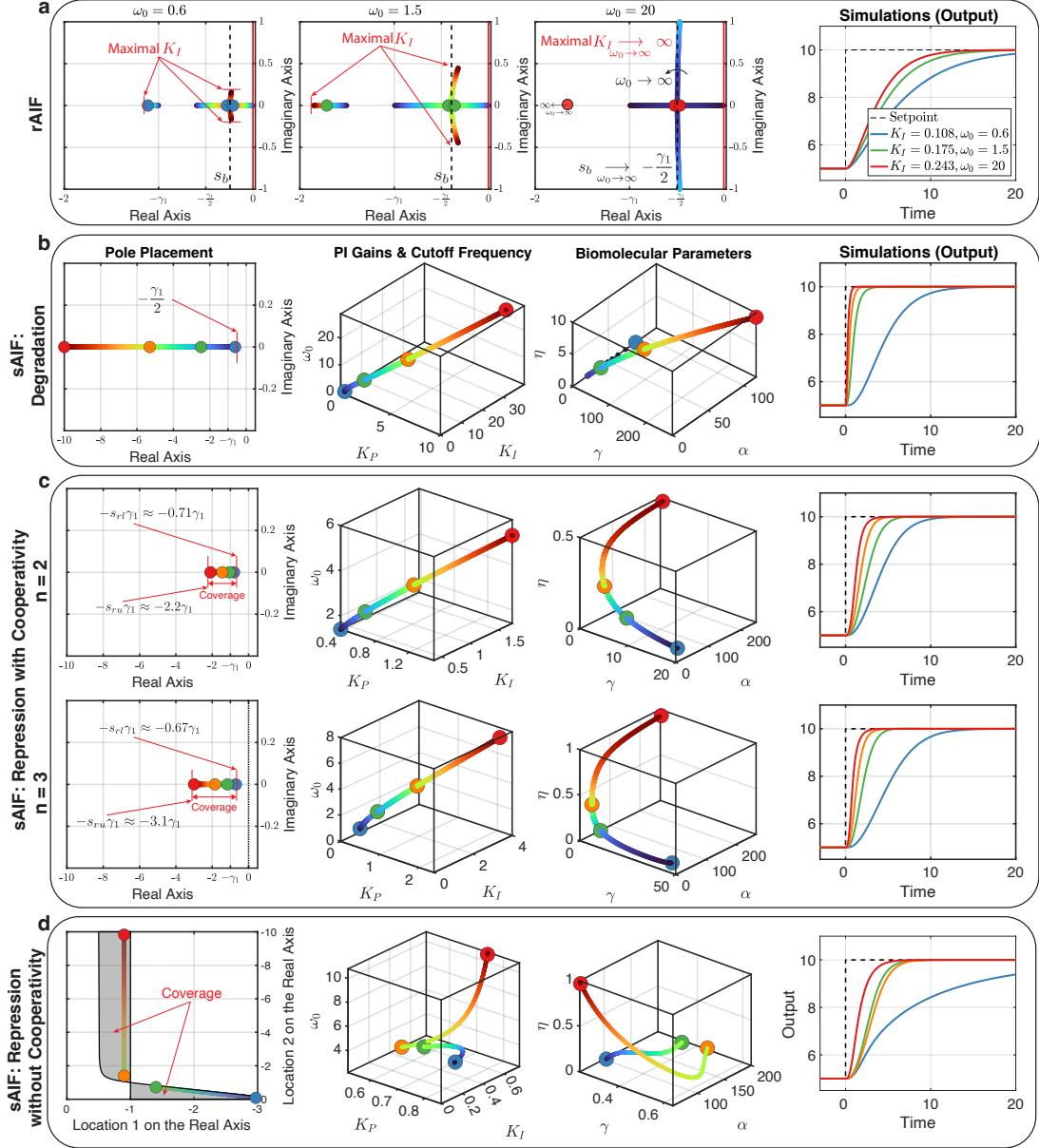


Figure S3: Dynamic Performance Assessment. A birth-death process (see Fig. 5(a), left) is controlled, as a case study, by rAIF and sAIF. The control action is denoted by u and the degradation rate of the process is denoted by γ_1 . (a) Performance limitation of rAIF. Positive actuation by \mathbf{Z}_1 (i.e. $u = kz_1$) yields a response that cannot be sped up beyond a certain threshold without inflicting oscillations. The three plots to the left depict the root-locus of the linearized closed-loop dynamics in the complex plane for three values of the cutoff frequency ω_0 as the integral gain K_I is increased from zero up to its upper bound given in Equation (S12). Note that s_b , calculated analytically in Equation (S25), denotes the breaking point where two eigenvalues meet on the real axis and break away to become complex conjugates. As ω_0 is increased, one real eigenvalue moves more to the left and the breaking point s_b tends to $-\gamma_1/2$. This indicates that the dominant eigenvalue is confined (by the breaking point s_b) within a small region close to the imaginary axis when γ_1 is small, and thus imposing a limitation on the achievable performance as demonstrated in the simulations shown in the right plot. (b) and (c) Design flexibility offered by sAIF. Giving rise to a filtered-PI controller, sAIF offers more flexibility in achieving superior performance compared to rAIF. These two panels show the steps of a pole-placement control design problem where the three dominant poles are placed on the real axis of the left-half plane to ensure a stable and non-oscillating response. The design problems start by picking the poles, then computing the PI gains and cutoff frequency, and finally computing the biomolecular parameters that allow us to obtain the nonlinear simulations to the right. With degradation actuation in Panel (b), one can place the eigenvalues arbitrarily as far to the left as desired and thus achieving a response that is as fast as desired without overshoots or oscillations. In contrast, with repression in Panel (c), there is a restriction on how far to the left the poles can be placed. However, this restriction can be mitigated by introducing higher cooperativity. (d) Repression without cooperativity. Without cooperativity, the three poles cannot be placed in the same location. To this end we place them at two locations on the real axis. The shaded regions in the left plot depicts the feasible locations that are constrained by the PI coverages (see SI Section S4). These regions indicate that one cannot place all the poles to the left of $-\gamma_1$ which still yields a better performance than rAIF, but cannot outperform those presented in Panels (b) and (c). The numerical values of the parameters are $\gamma_1 = 1$, $\mu = 5$, $\theta = 1$, $\kappa_1 = 10^{-5}$. To change the setpoint at $t = 0$, μ is doubled.

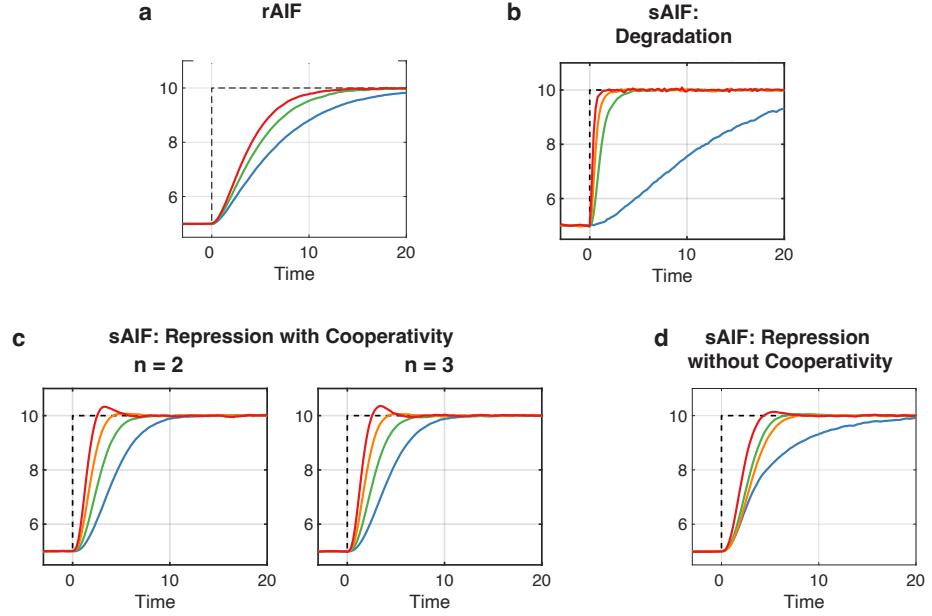


Figure S4: Dynamics of Average Concentrations in the Stochastic Setting. This figure presents the stochastic counterpart to the simulations shown in Figs. 4 and S3. Biomolecular parameters are taken directly from the root locus analysis performed in the deterministic setting, and stochastic simulations—averaged over 10^5 trajectories—are used to track the evolution of mean concentrations. The results confirm that the same dynamic patterns persist under stochasticity, with a slight overshoot observed in some cases, which can be mitigated by selecting less aggressive pole placements.

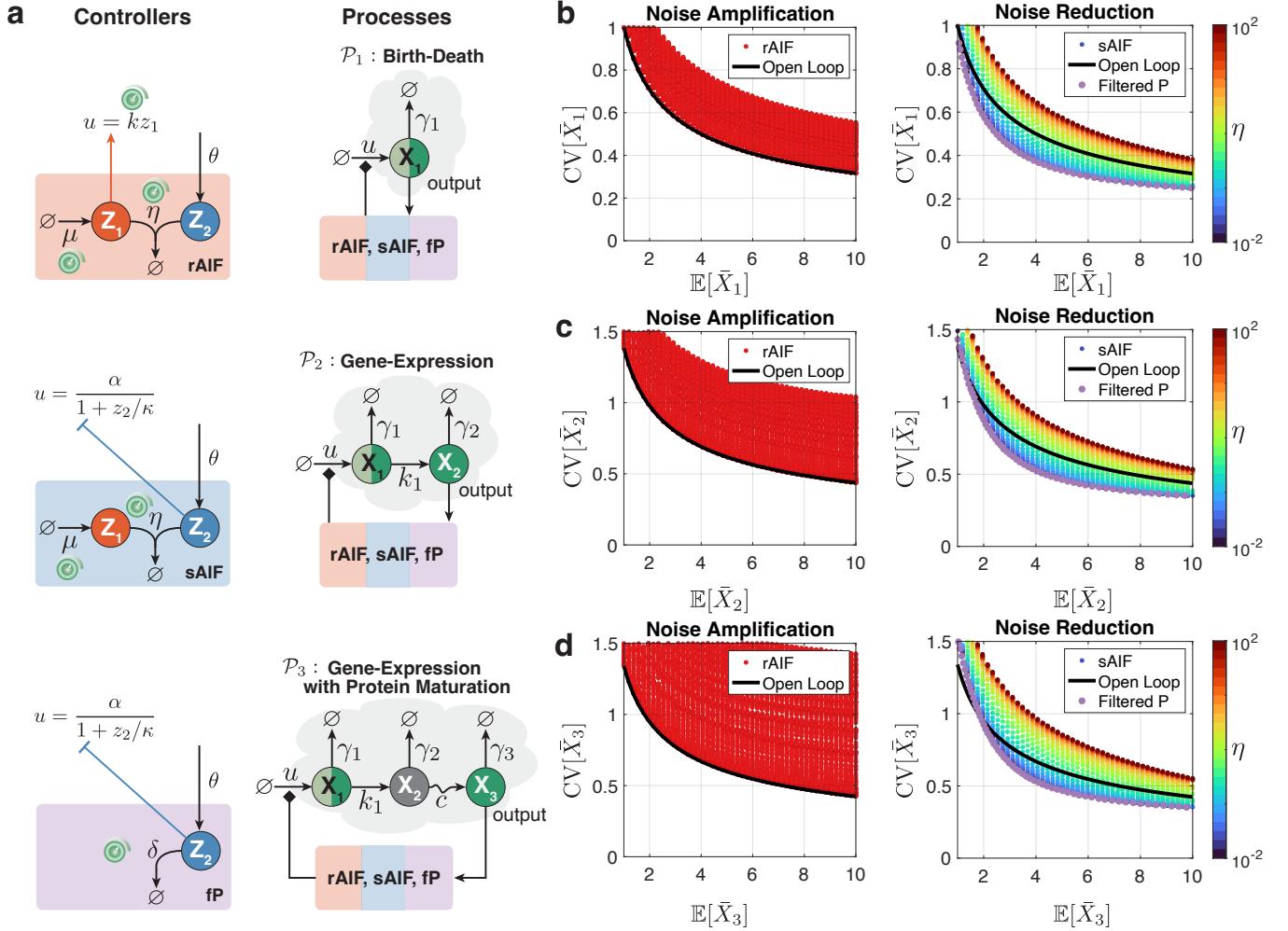


Figure S5: Controlling three processes with rAIF, sAIF and fP controllers. (a) The processes to be controlled are denoted by \mathcal{P}_1 , \mathcal{P}_2 , and \mathcal{P}_3 . \mathcal{P}_1 is a birth-death process identical to that in Fig. 5(a). \mathcal{P}_2 is a process with two species which can be used to model gene expression with \mathbf{X}_1 being the mRNA while \mathbf{X}_2 being the protein. For this model, k_1 is the translation rate while γ_1 and γ_2 are the removal rates. Finally \mathcal{P}_3 is similar to \mathcal{P}_2 , but with an additional maturation step where \mathbf{X}_2 is converted to \mathbf{X}_3 at a rate c . Note that all arrows pointing to a species indicate catalytic production reactions except the curved arrow which indicates a conversion reaction. Furthermore, the square shaped arrowhead indicates either activation or repression. These processes are controlled by three different controllers: rAIF and sAIF and a fP controller. (b), (c) and (d) displays the relationship between the coefficients of variation and expectations at stationarity for the outputs. The left plots correspond to rAIF, while the right plots correspond to sAIF and fP feedback. The solid black lines are calculated analytically using an equation similar to Equation (13) given by $CV[\bar{X}_L] = \sqrt{\frac{1+\beta}{E[\bar{X}_L]}}$ with $\beta = 0$, $\frac{k_1}{\gamma_1+\gamma_2}$ and $\frac{k_1c(c+\gamma_1+\gamma_2+\gamma_3)}{(\gamma_1+\gamma_3)(\gamma_1+\gamma_2+c)(\gamma_2+c+\gamma_3)}$ for \mathcal{P}_1 , \mathcal{P}_2 and \mathcal{P}_3 , respectively. In contrast, the remaining data points are computed empirically through the stochastic simulation algorithm¹, generating $10^4 - 10^5$ trajectories on the Euler cluster (<https://scicomp.ethz.ch/wiki/Euler>). Numerical values for \mathcal{P}_1 are $\gamma_1 = 0.1$. Numerical values for \mathcal{P}_2 are: $\gamma_1 = k_1 = 1$, $\gamma_2 = 0.1$. Numerical values for \mathcal{P}_3 are: $\gamma_1 = k_1 = c = 1$, $\gamma_2 = \gamma_3 = 0.1$. The controller parameter values are as follows: $\alpha = 2$, $\theta = 1$, $\kappa = 0.05$, $\eta \in [10^{-2}, 10^2]$, $k \in [10^{-3}, 1]$, $\delta \in [0.1, 20]$, $\mu \in [1, 10]$.

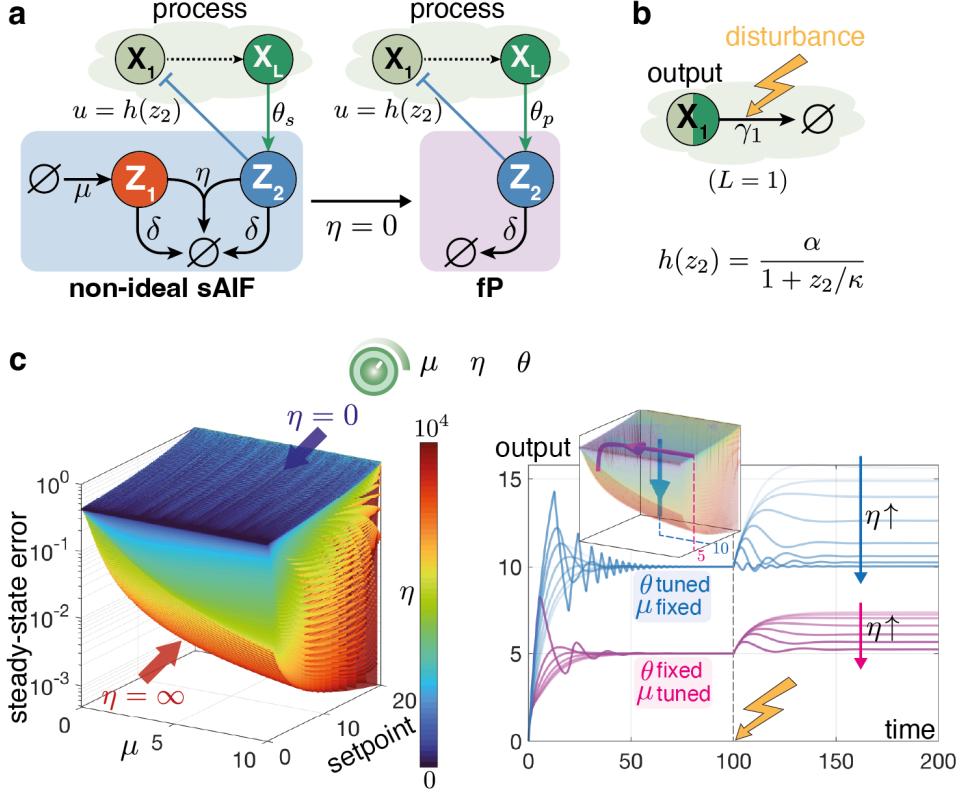


Figure S6: Steady-state error comparison: non-ideal sAIF controller vs. filtered proportional controller. (a) Closed-loop networks illustrating the non-ideal sAIF controller and the filtered proportional controller. The topology of the non-ideal sAIF controller differs from the ideal sAIF controller shown in Fig. 3, as the controller species Z_1 and Z_2 are subject to dilution at a rate δ . (b) Example process and actuation mechanism used in numerical simulations. The process is a simple birth-death system with $L = 1$ species, where the disturbance perturbs the degradation rate γ_1 of the output. Both controllers share the same actuation mechanism, modeled by the function h , with α representing the maximal production rate and κ the dissociation constant of the repressor Z_2 . (c) Numerical demonstration of steady-state errors. In these simulations, the example process is regulated by the non-ideal sAIF controller with fixed parameters: $\gamma_1 = \delta = 0.1$, $\alpha = 2$, and $\kappa = 0.05$. The swept parameters are $\mu \in [0, 10]$, $\eta \in [0, 10^4]$, and $\theta \in [10^{-5}, 10]$. Note that when $\eta = 0$, the system reduces to the filtered proportional controller. A disturbance is applied by halving the degradation rate. The 3D plot on the left illustrates the steady-state error caused by the disturbance as μ , θ , and η are varied. For each combination of these parameters, the steady-state error and the corresponding setpoint are computed and represented as points in the plot. The results indicate that, for any given setpoint, the filtered proportional controller ($\eta = 0$) exhibits the highest steady-state error. As η increases, the steady-state error decreases, with the minimum error achieved as $\eta \rightarrow \infty$. The plot on the right provides detailed examples for specific parameter values. The blue responses correspond to a fixed $\mu = 10$, with θ adjusted to maintain a pre-disturbance setpoint of 10. The magenta responses correspond to a fixed $\theta = 5$, with μ tuned to achieve a pre-disturbance setpoint of 5. These examples highlight the dependence of steady-state error on parameter tuning and demonstrate the improved performance of the non-ideal sAIF controller as η increases.

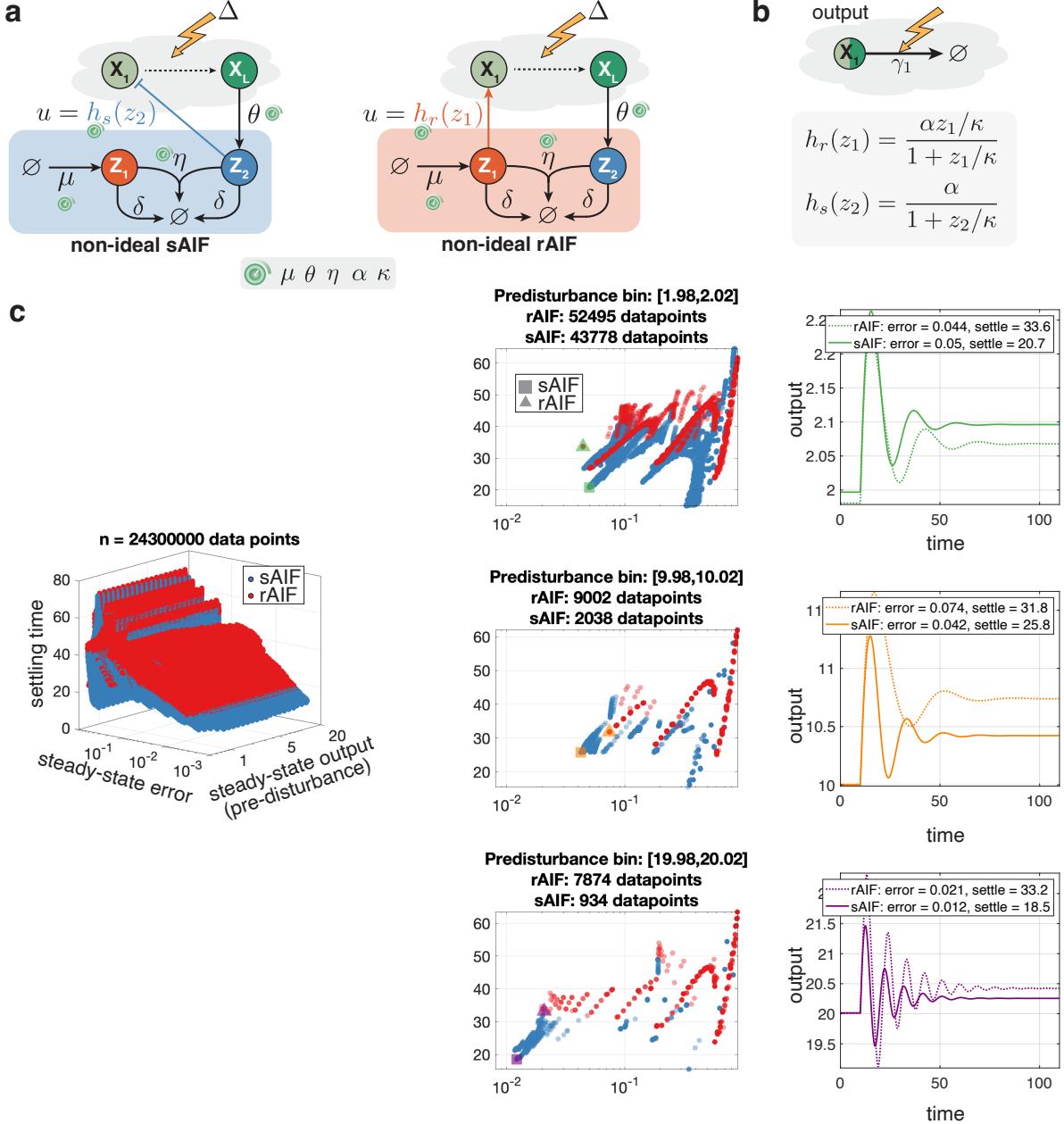


Figure S7: Dynamic performance vs. steady-state error for non-ideal sAlF and rAlF Controllers. (a) Closed-loop network diagrams of the sAlF and rAlF controllers, highlighting the scanned parameters. (b) Regulated network and actuation functions. The regulated network consists of a simple single species process whose production is controlled by the feedback controllers, while its degradation rate γ_1 is disturbed by halving its value. The actuation is modeled via activating and repressing Hill functions for the rAlF and sAlF controllers, respectively, with α as the maximal production rate and κ as the dissociation constant. (c) Simulation results. Controller parameters $\mu, \theta, \eta, \alpha$, and κ were jointly scanned, and for each combination, the pre-disturbance steady-state level, post-disturbance steady-state error, and settling time were computed. Each parameter set corresponds to a data point—shown in blue for sAlF and red for rAlF. The sAlF data points (blue) extend further downward, indicating that sAlF can simultaneously achieve faster settling times without sacrificing steady-state errors. This demonstrates that sAlF relaxes the trade-off between dynamic performance and steady-state error more effectively than rAlF, due to the additional control afforded by its proportional component. Representative data points for sAlF (square) and rAlF (triangle) are highlighted and their dynamic responses are shown in the right-hand-side plots with slices of the 3D plot binned over 3 pre-disturbed steady-state levels. Simulation details: $\gamma_1 = \delta = 0.1$, $\mu, \theta, \alpha \in [0.1, 10]$, $\eta \in [10^{-5}, 10^3]$, $\kappa \in [10^{-3}, 0.1]$. Settling time was defined as the time required for the signal to enter and remain within a 1% tolerance band around the new steady state. Simulations were performed in MATLAB over a grid of 30^5 parameter combinations using a workstation with 128 parallel threads. The three slices are binned across three steady-state output levels (pre-disturbance) given by 2, 10 and 20 with a bin width of 0.04. The number of data points collected for each slice are shown in the titles of the plots.

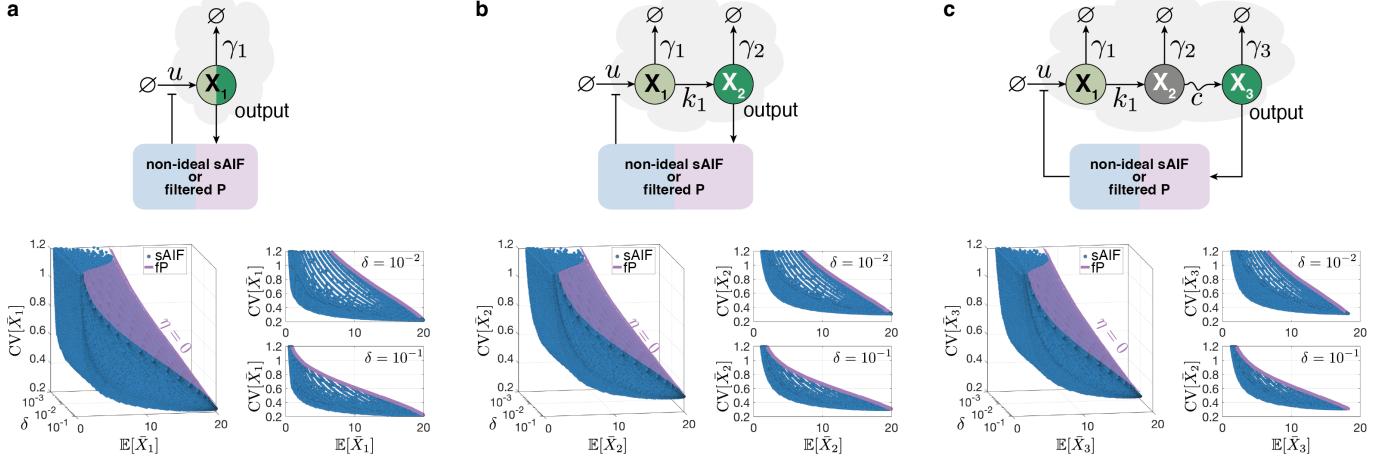


Figure S8: Comparison of stationary noise between the non-ideal sAIF and filtered proportional (fP) controllers in feedback with three regulated networks consisting of (a) one species, (b) two species, and (c) three species. Panel (a) is identical to Fig. 6(e) and is included here for convenience. In all cases, the actuation function is $u = \frac{\alpha}{1+z_2/\kappa}$ with fixed $\alpha = 2$ and $\kappa = 0.05$, while $\delta \in [10^{-3}, 10^{-1}]$ is varied for both controllers. For the non-ideal sAIF controller, $\theta \in [10^{-5}, 10]$, $\mu \in [10^{-1}, 10]$, and $\eta \in [10^{-5}, 10^5]$ are also varied across all three networks. For the fP controller, $\theta_p \in [10^{-5}, 10]$ is varied. The simulations consistently show that for a fixed repressor \mathbf{Z}_2 (and thus the actuation mechanism h_s), the non-ideal sAIF controller either outperforms or matches the fP controller in reducing stationary noise in the output. The numerical values of the parameters of the three regulated networks are as follows: (a) $\gamma_1 = 0.1$, (b) $\gamma_1 = k_1 = 1, \gamma_2 = 0.1$, and (c) $\gamma_1 = c = k_1 = 1, \gamma_2 = \gamma_3 = 0.1$.

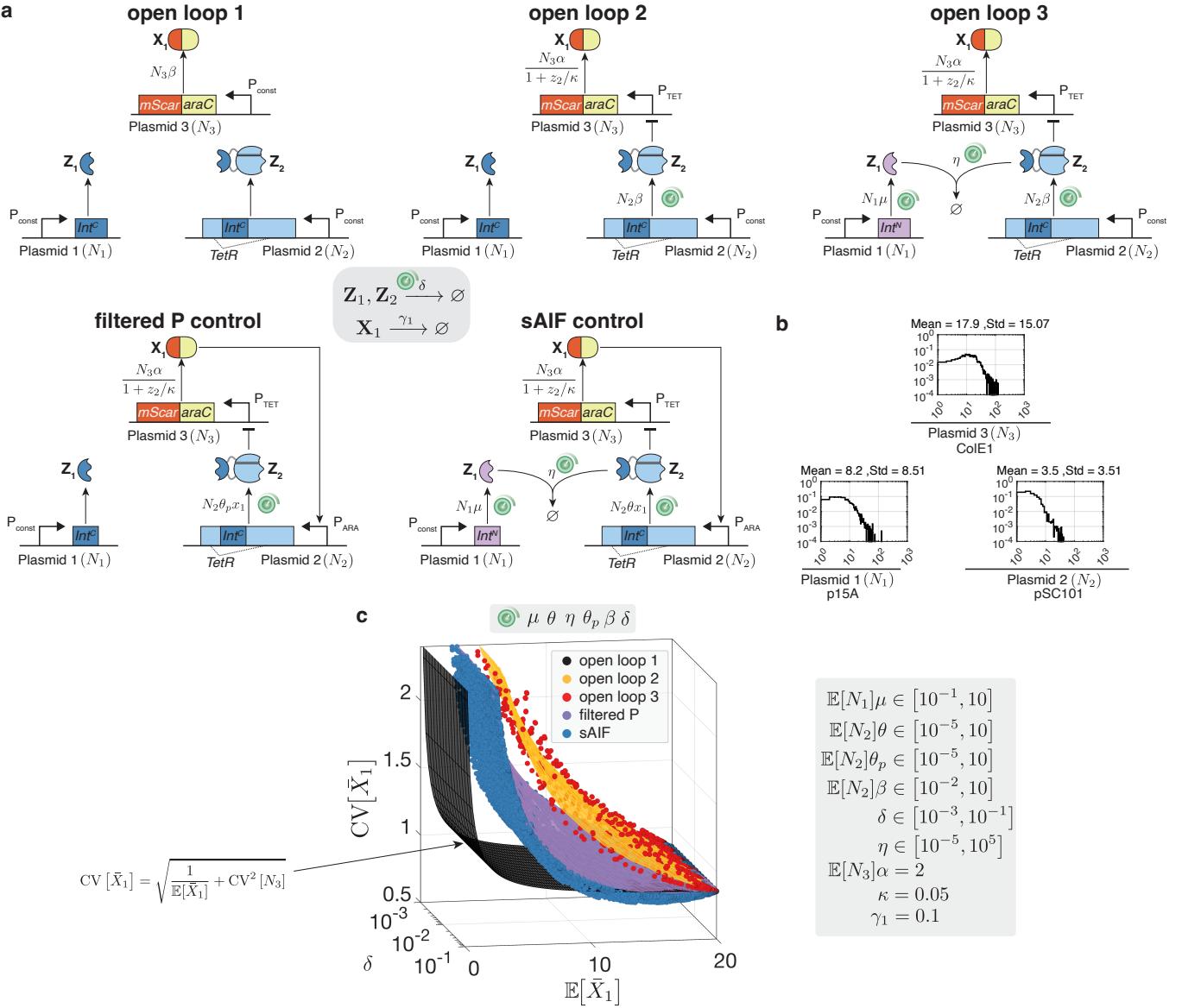


Figure S9: Numerical analysis in the presence of both intrinsic and extrinsic noise. (a) The three open-loop circuits under consideration, filtered proportional control, and sAIF control. In OL 1 and the filtered-proportional control circuit, plasmid 1 serves as a dummy plasmid in the experiments—included solely to ensure that all circuits operate under comparable plasmid burden but do not affect the output. However, it does not influence the regulated output \mathbf{X}_1 . Similarly, in OL3, both plasmids 1 and 2 are dummy plasmids and do not affect \mathbf{X}_1 , serving only to maintain consistent experimental conditions. (b) This panel shows the experimentally measured distributions of plasmid copy numbers for three plasmids: p15A, pSC101, and ColE1, as reported in ². These distributions are used to model extrinsic noise in our simulations. Specifically, the propensities of the production reactions in the model (as in Fig. 6) are multiplied by the plasmid copy numbers N_1 , N_2 , and N_3 , which are now treated as random variables sampled from these distributions. As noted in ², the standard deviations are comparable to the means, highlighting the significant cell-to-cell variability in plasmid abundance. (c) The circuits shown in panel (a) are simulated under the same conditions as in Fig. 6, with the key difference being that plasmid copy numbers are now drawn randomly from the distributions shown in panel (b). This introduces extrinsic variability in addition to the intrinsic noise already present. The resulting plot—identical to Fig. 7(e)—is included here for convenience. The fixed and swept parameter values used in the simulations are listed on the right, and can be directly compared with those used in the intrinsic-noise-only case of Fig. 6(e).

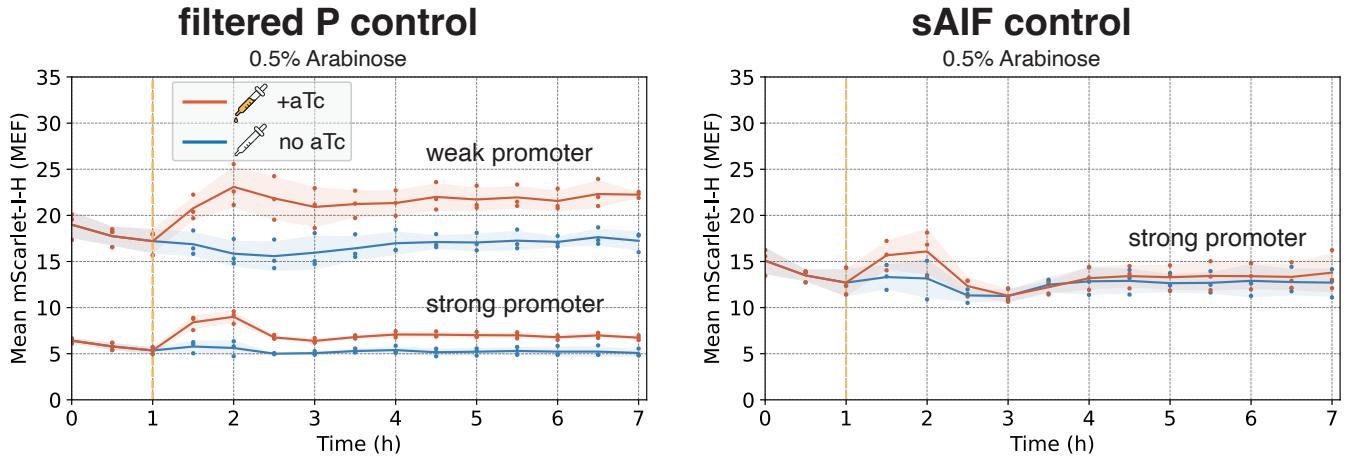


Figure S10: Time-course experiments illustrating the dynamic response of the output to a disturbance. This figure extends Fig. 7(b) by including an additional experiment for the filtered proportional controller, where Gene 2 is driven by both strong and weak promoters. In contrast, Fig. 7(b) depicts only the response for the weak promoter case. Here, we show that the output level, measured in Molecules of Equivalent Fluorochrome (MEF), for the sAIF controller falls between the two levels observed for the filtered proportional controller under strong and weak promoter conditions. Notably, the sAIF controller exhibits significantly improved adaptation, achieving a much smaller steady-state error compared to both cases of the filtered proportional controller.

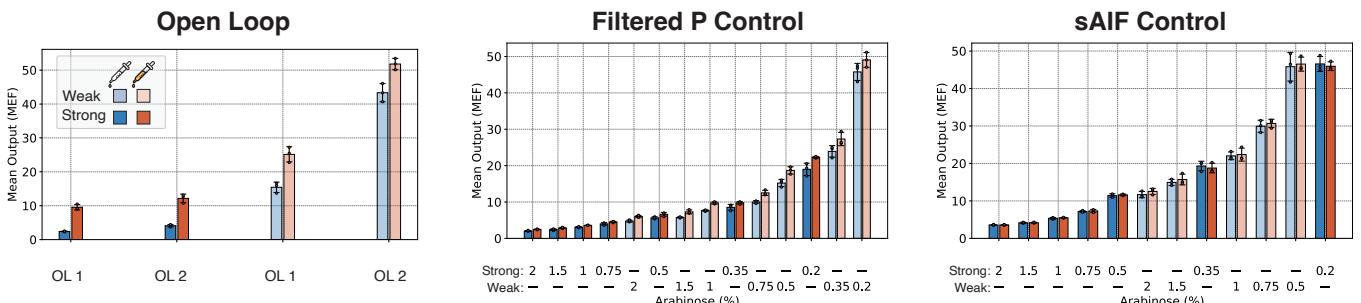


Figure S11: Bar graphs showing the unnormalized data presented in Fig. 7(c). All measurements reported here are in Molecules of Equivalent Fluorochrome (MEF) units.

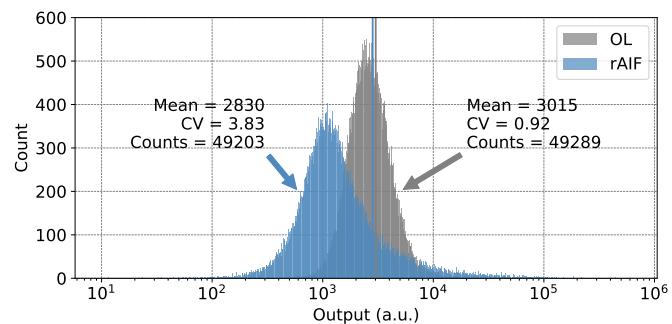


Figure S12: Noise amplification in an rAIF controller. The data in this panel are adapted from previously published measurements of an rAIF controller implemented using Sigma/anti-Sigma sequestration³. The two distributions compare the output noise level in the open- and closed-loop circuits with comparable mean levels. Although the rAIF successfully achieved RPA (see³), it increases the CV by more than fourfold relative to the open-loop circuit. Note that the mean superfolder GFP output (FL1-A) and CV of previously published flow cytometry measurements of rAIF (0.2% arabinose, 7 nM 3OC6-HSL) and open loop (0.2% arabinose, 0 nM 3OC6-HSL) strains from Aoki et al. (Extended Data Fig. 6(d))³ are calculated and plotted here.

Plasmid	Gene type	Circuits	Description
pSKA837	1	OL1, OL2, fP	$P_{J23119-B0033-intC(gp41-1)-B0015}$, p15A ori, spec ^R
pSKA838	1	OL3, sAIF	$P_{J23119-B0033-intN(gp41-1)-B0015}$, p15A ori, spec ^R
pSKA839	2 (weak)	OL2, OL3	$P_{J23111-B0033-tetR1-183::intC(gp41-1)::tetR184-212-B0015}$, pSC101 ori, cam ^R
pSKA840	2 (strong)	OL1, OL2, OL3	$P_{J23119-B0033-tetR1-183::intC(gp41-1)::tetR184-212-B0015}$, pSC101 ori, cam ^R
pSKA841	2 (weak)	fP, sAIF	$P_{araB-B0033-tetR1-183::intC(gp41-1)::tetR184-212-B0015}$, pSC101 ori, cam ^R
pSKA842	2 (strong)	fP, sAIF	$P_{araB-AraJ-B0033m-tetR1-183::intC(gp41-1)::tetR184-212-B0015}$, pSC101 ori, cam ^R
pSKA843	3	OL2, OL3, fP, sAIF	$P_{LtetO-1-B0033-V5::araC::mScarlet-I-B0015}$, ColE1 ori, carb ^R
pSKA844	3	OL1	$P_{J23101*-V5::araC::mScarlet-I-B0015}$, ColE1 ori, carb ^R
pSKA885	3	OL1	$P_{J23114-V5::araC::mScarlet-I-B0015}$, ColE1 ori, carb ^R
pSKA886	3	OL1	$P_{J23106-V5::araC::mScarlet-I-B0015}$, ColE1 ori, carb ^R
pSKA887	3	OL1	$P_{J23102-V5::araC::mScarlet-I-B0015}$, ColE1 ori, carb ^R
pSKA888	3	OL1	$P_{J23111-V5::araC::mScarlet-I-B0015}$, ColE1 ori, carb ^R
pSKA889	3	OL1	$P_{J23119-V5::araC::mScarlet-I-B0015}$, ColE1 ori, carb ^R

Table S1: List of plasmids constructed and used in this study. Plasmid sequences can be found at the following Github repository <https://github.com/Maurice-Filo/Sensor-Based-Biomolecular-Integral-Controllers>.

Circuit	Gene 1	Gene 2 promoter	Testing strain	Host strain	Plasmids (in order: Gene type 1, 2, 3)
Open loop 1	<i>intC</i>	strong	SKA1838	SKA360	pSKA838, pSKA840, pSKA884
Open loop 1	<i>intC</i>	strong	SKA1839	SKA360	pSKA838, pSKA840, pSKA885
Open loop 1	<i>intC</i>	strong	SKA1840	SKA360	pSKA838, pSKA840, pSKA886
Open loop 1	<i>intC</i>	strong	SKA1841	SKA360	pSKA838, pSKA840, pSKA887
Open loop 1	<i>intC</i>	strong	SKA1842	SKA360	pSKA838, pSKA840, pSKA888
Open loop 1	<i>intC</i>	strong	SKA1843	SKA360	pSKA838, pSKA840, pSKA889
Open loop 2	<i>intC</i>	weak	SKA1785	SKA360	pSKA838, pSKA839, pSKA843
Open loop 2	<i>intC</i>	strong	SKA1787	SKA360	pSKA838, pSKA840, pSKA843
Open loop 3	<i>intN</i>	weak	SKA1784	SKA360	pSKA837, pSKA839, pSKA843
Open loop 3	<i>intN</i>	strong	SKA1786	SKA360	pSKA837, pSKA840, pSKA843
Filtered P	<i>intC</i>	weak	SKA1789	SKA360	pSKA838, pSKA841, pSKA843
Filtered P	<i>intC</i>	strong	SKA1791	SKA360	pSKA838, pSKA842, pSKA843
sAIF	<i>intN</i>	weak	SKA1788	SKA360	pSKA837, pSKA841, pSKA843
sAIF	<i>intN</i>	strong	SKA1790	SKA360	pSKA837, pSKA842, pSKA843

Table S2: List of testing strains constructed and used in this study.

References

1. Gillespie, D.T. (1977). Exact stochastic simulation of coupled chemical reactions. *The journal of physical chemistry* *81*, 2340–2361.
2. Shao, B., Rammohan, J., Anderson, D.A., Alperovich, N., Ross, D., and Voigt, C.A. (2021). Single-cell measurement of plasmid copy number and promoter activity. *Nature communications* *12*, 1475.
3. Aoki, S.K., Lillacci, G., Gupta, A., Baumschlager, A., Schweingruber, D., and Khammash, M. (2019). A universal biomolecular integral feedback controller for robust perfect adaptation. *Nature* *570*, 533–537.