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SUMMARY1

Effective cellular regulation relies on feedback control2

mechanisms to maintain homeostasis and mitigate en-3

vironmental fluctuations. Simple repression-based neg-4

ative feedback is a widely used regulatory strategy, but5

it provides limited adaptation capabilities and struggles6

to effectively reject disturbances. Here, we theoreti-7

cally and computationally demonstrate that a sensor-8

based Antithetic Integral Feedback (sAIF) controller en-9

hances this regulatory motif as it achieves robust adap-10

tation while ensuring good transient performance and11

intrinsic noise suppression. By leveraging a topolog-12

ical refinement, sAIF embeds a proportional feedback13

component within its integral feedback structure, effec-14

tively implementing a biomolecular Proportional-Integral15

(PI) controller with a single actuation reaction. The-16

oretical analysis and simulations reveal that sAIF out-17

performs conventional negative feedback and standard18

AIF controllers, achieving superior response speed and19

lower cell-to-cell variability. We implement this con-20

troller in Escherichia coli using inteins—self-splicing pro-21

tein segments—to construct a genetically encoded feed-22

back loop. Experimental results confirm that sAIF pro-23

vides rapid adaptation and robust disturbance rejection24

over a broad dynamic range. Furthermore, we show25

that at low expression levels—where noise is most pro-26

nounced—the sAIF controller exhibits lower total noise27

than the parts-matched, no-feedback configuration in a28

multi-plasmid context that introduces extrinsic noise due29

to plasmid copy-number variability. This observation is30

supported by simulations incorporating both intrinsic and31

extrinsic noise. These findings establish a generalizable32

design principle for engineering high-performance bio-33

logical controllers, with broad implications for synthetic34

biology, metabolic engineering, and cell-based thera-35

pies.36
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INTRODUCTION41

Living cells are complex dynamical systems that inter-42

act with their environment and endure disturbances that43

can disrupt their biomolecular processes. To robustly44

maintain homeostasis, cells often rely on exquisite feed- 45

back control mechanisms1–4. Synthetic biology5 aims to 46

mimic and enhance these natural control capabilities by 47

engineering biomolecular systems and embedding them 48

inside the cells to sense, compute, and actuate in a pro- 49

grammable manner6,7. A major challenge in this field 50

is designing feedback controllers capable of managing 51

noise and uncertainty while achieving precision and high 52

performance. Advances in control-theoretic tools8–12
53

have driven progress, giving rise to Cybergenetics13, a 54

discipline at the intersection of synthetic biology and con- 55

trol theory, fostering novel strategies for engineering re- 56

silient biomolecular systems. 57

One of the fundamental tasks of synthetic biomolec- 58

ular feedback controllers is to maintain homeostasis, a 59

critical property with transformative potential in fields like 60

bioproduction, metabolic engineering, and cell-based 61

therapies, where many diseases stem from homeostatic 62

failure14. Robust Perfect Adaptation (RPA)15–17 is a strin- 63

gent form of homeostasis, ensuring exact steady-state 64

regulation of a target variable to a setpoint despite vary- 65

ing initial conditions, uncertainties, and constant distur- 66

bances. Achieving RPA often requires integral feedback, 67

which drives the steady-state error—the deviation from 68

the desired setpoint—to zero by mathematically integrat- 69

ing the error signal over time18,19. The antithetic integral 70

feedback (AIF) controller20 implements this mechanism 71

as a biochemical reaction network, capable of achieving 72

RPA in both deterministic and stochastic settings where 73

noise enter the dynamics. Stochastic noise21 can be cat- 74

egorized as intrinsic, arising from the random timing of 75

biochemical reactions, or extrinsic, stemming from varia- 76

tions in global cellular factors such as plasmid copy num- 77

ber, gene expression capacity, or cell size. The AIF mo- 78

tif is proven to be both necessary and minimal for RPA 79

in the stochastic regime22,23. Supported by control the- 80

ory, AIF-based controllers and their variants have rapidly 81

found their way to experimental implementations in Es- 82

cherichia coli 22,24,25 and mammalian cells26–28. 83

Since its introduction, efforts to enhance the AIF 84

controller have focused on optimizing dynamic trade- 85

offs29–31 or incorporating additional circuitry32–41, includ- 86

ing Proportional-Integral-Derivative (PID) controllers and 87

anti-windup strategies. Standalone integral controllers, 88

such as AIF, face limitations: they can only partially 89

shape the dynamic response32,33 and achieve RPA at the 90

cost of increased intrinsic stochastic noise34,42 or ener- 91

getic burden42, resulting in elevated cell-to-cell variabil- 92

ity. These drawbacks can be mitigated by adding propor- 93

tional and derivative components. In particular, adding 94

proportional feedback was shown to improve dynamic 95
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Figure 1: Sensor-based antithetic integral feedback (sAIF) controllers not only achieve Robust Perfect Adaptation (RPA) but also improve dynamic performance and
reduce intrinsic cell-to-cell variability. The figure illustrates four genetic circuits for robustly regulating a target output within an arbitrary network. The top-left shows an
open-loop configuration without feedback, while the bottom-left depicts a (filtered) proportional feedback controller providing negative feedback from the regulated output
via the sensor gene. The top-right and bottom-right circuits represent reference-based (rAIF) and sensor-based (sAIF) AIF controllers, where two genes encode mutually
sequestering proteins. Both AIF circuits include a constitutively expressed reference gene, differing in actuation mechanisms via the reference or sensor genes. The plots
show that neither the open-loop nor proportional controllers achieve RPA, though the proportional controller reduces steady-state error compared to open-loop. In contrast,
rAIF and sAIF both achieve RPA, with sAIF surpassing rAIF by offering superior dynamics and reduced variability, a feat paralleled by the proportional controller. These
properties are supported by theory and experiments, attributed to a “hidden” proportional component within the sAIF design.

performance and reduce noise32–34.96

In this paper, we examine and genetically implement97

a simple variant of the AIF motif, first introduced in20
98

Fig. S1 and more recently studied in42. This variant re-99

tains the basic AIF network topology but replaces one100

actuation reaction, forming a sensor-based AIF topol-101

ogy (sAIF) shown in Fig. 1. While initially regarded as102

a standalone integral controller, we demonstrate that it103

contains a “hidden” proportional component, realizing a104

minimal Proportional-Integral (PI) controller. The design105

is minimal in that it introduces no new species or reac-106

tions to the antithetic motif, which is shown to be the107

minimal integrator in the stochastic setting38. Instead,108

a single reaction is replaced. This subtle modification109

yields all the added benefits of proportional control, in-110

cluding improved dynamic response and intrinsic noise111

attenuation, without imposing any additional complexity112

or burden relative to the original integral controller.113

To implement the sAIF controller in bacteria, we uti-114

lized inteins for genetic engineering26. Inteins are pro-115

teins that perform protein splicing reactions without ad-116

ditional cofactors43–45. Split inteins, referred to as IntN117

and IntC, enable sequence exchange, cleavage, or liga-118

tion by flanking protein domains, offering versatile func-119

tionalities. Previously, we used split inteins to construct120

reference-based AIF controllers in mammalian cells26
121

(Fig. 1). Building on this, we engineer the first biomolec-122

ular PI controller in E. coli by employing split inteins to123

implement a sensor-based AIF topology. Our experimen-124

tal results confirmed its theoretically predicted ability to125

achieve RPA. The high dynamic performance observed126

in E. coli, alongside our prior mammalian cell study, high- 127

lights inteins’ versatility across life domains. While our 128

theoretical analyses focus on intrinsic noise, our exper- 129

imental data also reflect the impact of extrinsic noise 130

arising from plasmid copy number variability in our multi- 131

plasmid design. Even under these conditions, the data 132

show that at low expression levels, closed-loop imple- 133

mentations (including that of the sAIF controller) exhibit 134

lower total noise than open-loop implementations with 135

comparable plasmid copy number variability, consistent 136

with stochastic simulations that account for both intrinsic 137

and extrinsic noise. 138

Notation 139

Uppercase bold letters, e.g. X1, denote species names. 140

Their lowercase counterparts, e.g. x1(t), represent de- 141

terministic time-varying concentrations, while uppercase 142

counterparts, e.g. X1(t), represent stochastic copy num- 143

bers, with t as time. Over-bars, e.g. x̄1 ≜ limt→∞ x1(t), 144

indicate steady-state values (when they exist). Tildes, 145

e.g. x̃1(t) ≜ x1(t)−x̄1, represent deviations from steady- 146

state, and hats, e.g. x̂1(s), denote the Laplace transform 147

of x̃1(t), where s is the Laplace variable. Variables s and 148

t are omitted when clear from context. The Jacobian of a 149

multi-variable function f , evaluated at x̄ ∈ Rn, is ∂f(x̄). 150

Rn
+ and Rn

− are sets of n-dimensional vectors with non- 151

negative and non-positive entries, respectively. ei is a 152

vector of appropriate size with all zeros except for the ith 153

entry, which is 1. E[X1] and CV[X1] denote the expecta- 154
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Figure 2: Biomolecular feedback controllers: framework and basic motifs. (a) Closed-loop network: An arbitrary regulated network is in a feedback interconnection with a
controller network whose objective is to endow the regulated output of interest XL with Robust Perfect Adaptation (RPA), high dynamic performance, and reduced cell-to-
cell variability. (b) Examples of actuation mechanisms. A single controller species Z actuates X via positive (activating production/blocking removal) or negative (blocking
production/activating removal) control, determined by the sign of ∂u/∂z. Examples of the functional forms of u are provided. Note that ξ(x) denotes the functional
form of degradation. Extended mechanisms with two control species are in SI Fig. S1. (c) Reaction motifs for elementary biomolecular controllers. Left: An intermediate
species Z2 is produced by the output XL at a rate θxL, degrades at a rate δ and closes the loop by negatively actuating the input X1. Right: An intermediate species Z1 is
constitutively produced at a rate µ, degrades at a rate δ′ and positively actuates the input X1. (d) The underlying control architectures of the basic controller motifs. Note
that P (s) is the process transfer function. Linear analysis shows direct feedback realizes a proportional controller (see SI Section S1.1) while indirect feedback through Z2

realizes a low-pass-filtered proportional controller with cutoff frequency ω0 and gain KP . In contrast, actuation with Z1 enables low-pass-filtered feedforward control with
gain KF and cutoff frequency ω′

0.

tion and coefficient of variation of X1.155

RESULTS156

A Framework for Biomolecular Feedback Controllers157

The closed-loop network in Fig. 2(a) provides a general158

framework for biomolecular controllers. It consists of a159

regulated network (the process) with L species: X1, X2,160

. . ., XL, and a controller network with M species: Z1,161

Z2, . . ., ZM. The networks interact through (1) a sens-162

ing reaction, where the regulated output XL influences163

controller species, and (2) an actuation reaction, where164

controller species influence the actuated input X1. The165

goal is to design a controller network that ensures RPA,166

maintaining a constant steady-state concentration of XL167

despite uncertainties, persistent disturbances, and vary-168

ing initial conditions. The controller must also provide169

good dynamic performance and suppress noise.170

We consider the actuation mechanisms in Fig. 2(b),171

classified as positive or negative and implemented172

through production or removal reactions. Positive actu-173

ation increases production or decreases removal, while174

negative actuation reduces production or increases re-175

moval. This is determined by the derivatives of the con-176

trol action u, defined next. The actuation reactions and177

their propensities are178 {
∅ −−→ X1 propensity: h+(z)

X1 −−→ ∅ propensity: h−(z)ξ(x1),
(1)

where h± define the actuation mechanisms and ξ(x1)179

represents degradation, e.g. ξ(x1) = x1/(x1 + κx) for180

modeling saturation effects. The total control action is181

u = h(z;x1) ≜ h+(z)− h−(z)ξ(x1). (2)

Examples of u’s functional forms are listed in Fig. 2(b).182

With this framework, the deterministic dynamics of the183

closed-loop network in Fig. 2(a) are 184{
process: ẋ = f(x) + ue1; xL = eTLx

controller: ż = g(z, xL); u = h(z, xL;x1),

(3)
where f, g, h are differentiable functions modeling the 185

regulated network, controller dynamics, and control 186

action, respectively, and x ≜ [x1, . . . , xL]
T , z ≜ 187

[z1, . . . , zM ]T . As such, the feedback control problem re- 188

duces to designing g and h that ensure RPA while achiev- 189

ing high dynamic performance and possibly suppressing 190

noise in the stochastic setting. 191

Biomolecular Proportional & Feedforward Control 192

Consider the two basic control topologies depicted in 193

Fig. 2(c): filtered proportional (fP) feedback and fil- 194

tered feedforward (fF). Their dynamics are compactly ex- 195

pressed as: 196


ż1 = µ− δ′z1

ż2 = θxL − δz2

u = h(z1, z2;x1),

examples of h parameters

fP α

1 + (z2/κ)n
µ = δ′ = 0

fF kz1 θ = δ = 0

(4)

A linear perturbation analysis (detailed in SI Sec- 197

tion S1.1) reveals the controller transfer function relating 198

xL to u as 199

û(s) = KF
ω′
0

s+ ω′
0

µ̂(s)−KP
ω0

s+ ω0
x̂L(s),

where KF ≜
σ1

δ′
; KP ≜

σ2θ

δ
; ω0 ≜ δ; ω′

0 ≜ δ′,

(5)

and ∂h(z̄1, z̄2; x̄1) ≜
[
σ1 −σ2 σx

]
with σ1, σ2 ≥ 0. The 200

transfer function in Equation 5, linking the controller’s 201

output to its input in the Laplace domain, allows us to 202

draw the block diagrams depicted in Fig. 2(d) which un- 203

ravel the architectures of the two controllers. The fP 204
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Figure 3: Assembly of biomolecular
Proportional-Integral (PI) controllers: inte-
grating a sequestration motif with the basic
controller topologies from Fig. 2(c). (a)
Different Antithetic Integral Feedback (AIF)
reaction motifs. The reference-based AIF
(rAIF) controller is obtained by assembling a
sequestration motif with the filtered feedforward
motif from Fig. 2(c). The sensor-based AIF
(sAIF) controller is obtained by assembling a
sequestration motif with the filtered P Feedback
motif from Fig. 2(c). The key difference lies in
the actuation reaction: rAIF uses the reference
molecule Z1 for positive actuation, while sAIF
uses the sensor molecule Z2 for negative
actuation. This simple but subtle difference
results in entirely distinct control architectures.
(b) Underlying control architectures. The
block diagram compactly represents the two
controllers operating in closed loop, color-coded
to match panel (a). The rAIF appends the
integrator with a feedforward component with
gain KF , while the sAIF appends it with a
proportional component with gain KP . The
resulting PI architecture is thus achieved
through a single actuation reaction.
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controller passes a proportional control action −KP x̃L205

through a low-pass filter, which is realized as a simple206

birth-death process via an intermediate species Z2 be-207

tween the output XL and input X1. Note that direct neg-208

ative actuation of the X1 by the XL, without an interme-209

diate species, results in a non-filtered proportional con-210

troller (see SI Section S1.1), which is more challenging211

to implement biologically. Finally, the fF controller has no212

feedback from XL, but it also includes a low-pass filter.213

Biomolecular Proportional-Integral Control214

Next, we “append” the basic controller motifs listed in215

Fig. 2(c) to the sequestration motif – which lies at the216

heart of the AIF controller20 – to obtain the two topolo-217

gies in Fig. 3(a). The reference-based (rAIF) and sensor-218

based (sAIF) controllers are obtained by appending the219

sequestration motif to the filtered feedforward and fil-220

tered proportional components from Fig. 2(c), respec-221

tively. The dynamics for both controllers can be com-222

pactly expressed as223 
ż1 = µ− ηz1z2

ż2 = θxL − ηz1z2

u = h(z1, z2;x1),

e.g. u =


α

1 + (z2/κ)n
(sAIF)

kz1 (rAIF).

(6)
Equation 6 differs from Equation 4 by replacing simple224

removal terms with sequestration terms. This is the key225

modification that leads to a robust steady-state output226

given by x̄L = µ/θ, assuming stability. A linear pertur-227

bation analysis (see SI Section S1.2) reveals the con-228

trol architectures, summarized in the block diagram in229

Fig. 3(b). The rAIF topology implements integral and230

feedforward control, both passed through a low-pass231

filter, while the sAIF topology realizes a PI controller232

passed through a low-pass filter. Note that the propor-233

tional component acts on the output rather than the error234

signal, consistent with the two degrees of freedom con-235

figuration (see19 Fig. 10.1). While error feedback could236

be implemented by adding an additional external actu-237

ation of X1
35, it is omitted here to reduce the genetic 238

components required for circuit construction. 239

Filtered PI Coverage 240

To conduct a simulation-free evaluation of the dynamic 241

capabilities of the various controller topologies, we ex- 242

amine the achievable ranges of the gains (KP ,KI) and 243

the cutoff frequency ω0. Specifically, we ask: can these 244

parameters be tuned to any desired value, and if not, 245

what ranges are achievable? Of course, a broader 246

range indicates greater flexibility in shaping the dy- 247

namic response. To address these questions, we first 248

establish a bi-directional mapping between biomolec- 249

ular parameters and the gain/cutoff-frequency param- 250

eters, translating biological constraints (e.g., positivity) 251

into the gain/cutoff-frequency space to reveal the attain- 252

able ranges. Here, we present the results for the sAIF 253

topology, with details in SI Section S2. 254

Consider the sAIF controller in Fig. 3(a). We treat 255

two biologically-relevant functional forms of h implement- 256

ing the two negative actuation mechanisms shown in 257

Fig. 2(b). Specifically, we have u = h(z2;x1) with 258

h(z2;x1) =


α

1 + (z2/κ)n
(Repression)

α− γz2ξ(x1) (Degradation),
(7)

where ξ(x1) = x1

x1+κx
. As established in SI Section S2, 259

the achievable gain and cutoff frequency sets for repres- 260

sion (Sn
r ) and degradation (Sd) are 261

Sn
r =

{
(KP ,KI , ω0) ∈ R3

+ : KP < n
ū

µ
, KI < ω0KP

(
1− µKP

nū

)}
Sd =

{
(KP ,KI , ω0) ∈ R3

+ : KI < ω0KP

}
,

(8)
where ū is the supporting input that depends solely on 262

the desired setpoint and the process (see SI Section S2, 263

Assumption 1 ). Observe that for all n = 1, 2, · · · , we 264

have Sn
r ⊂ Sn+1

r ⊂ Sd, and Sn
r converges to Sd as 265

n → ∞. Equation 8 indicates that repression constrains 266

4



the achievable proportional and integral gains KP and267

KI , but increasing cooperativity n expands the range,268

thus offering more flexibility in tuning the filtered PI pa-269

rameters. Degradation, by contrast, constrains only the270

integral gain KI . Note that these filtered PI controllers271

have more constrained achievable ranges compared to272

two-reaction PI controllers32,33, reflecting the trade-off for273

embedding proportional and integral feedback in a single274

actuation reaction.275
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Figure 4: Dynamic Performance Assessment. A birth-death process (see Fig. 5(a),
left) is controlled by rAIF and sAIF. (a) rAIF Performance Limitation. The response
cannot be sped up beyond a certain threshold without inflicting oscillations. The
left plot shows the locus of the eigenvalues as the integral gain KI is increased
while the cutoff frequency ω0 is fixed. Note that sb, calculated analytically in Equa-
tion S25, denotes the breaking point where two eigenvalues meet on the real axis
and break away to become complex conjugates. As ω0 is increased, one real eigen-
value moves more to the left and the breaking point sb tends to −γ1/2. Therefore,
the dominant eigenvalue is confined by the breaking point sb which imposes a limi-
tation on the achievable performance as demonstrated in the simulations. (b) and (c)
sAIF Design Flexibility. These two panels show the results of pole-placement where
the three closed-loop eigenvalues are placed on the real axis of the left-half plane
to ensure a stable and non-oscillating response. Unlike with repression actuation,
degradation actuation allows us to place the eigenvalues arbitrarily as far to the left
as desired to obtain a step-like response. However, cooperativity helps in mitigating
the restriction with repression actuation. The numerical values of the parameters
are γ1 = 1, µ = 5, θ = 1, κ1 = 10−5. To change the setpoint at t = 0, µ
is doubled. A more detailed version of this figure showing the mappings from the
eigenvalues to the gains and biomolecular parameters can be found in SI Fig. S3.

sAIF Controllers Enhance Dynamic Performance 276

Next, we demonstrate, analytically and through sim- 277

ulations, that sAIF offers more flexibility in shaping 278

the dynamics compared to rAIF. We also explore the 279

performance-enhancement capabilities of the two neg- 280

ative actuation mechanisms. We adopt a root locus 281

methodology similar to the one used in our previous 282

work32, where we analyzed other network topologies. 283

Consider the closed-loop dynamics of a simple one- 284

species birth-death process, i.e. f(x) ≜ −γ1x + u, 285

which is sufficient to highlight the proportional compo- 286

nent’s added flexibility. The process transfer function is 287

P (s) = 1
s+γ1

. Using the block diagram in Fig. 3(b), the 288

closed-loop transfer function for the linearized dynamics 289

of rAIF (KP = 0,KF > 0) and sAIF (KP > 0,KF = 0) is 290

calculated as H(s) ≜ x̂L(s)
µ̂(s) , with 291

H(s) =
ω0(KF s+KI)

s3 + (ω0 + γ1)s2 + ω0 (γ1 +KPKS) s+ ω0KSKI
.

(9)
Root-locus analysis (see SI Section S3) shows that for 292

rAIF, at least one pole cannot be placed left of s = −γ1

2 , 293

regardless of how KI is tuned or how fast the cutoff fre- 294

quency ω0 (i.e. sequestration rate η) is. This limits rAIF’s 295

response speed to a threshold dictated by γ1

2 . This lim- 296

itation is analytically established in SI Section S3 and 297

illustrated in Fig. 4(a). 298

This is exactly where the filtered-proportional compo- 299

nent, enabled by actuation via Z2 instead of Z1, adds cru- 300

cial flexibility. To illustrate this, consider the pole place- 301

ment design problem: the goal is to select PI gains 302

(KP ,KI) and cutoff frequency ω0 to place the three 303

closed-loop poles at s = −a. For stability, a > 0 should 304

place the poles in the left-half complex plane, on the real 305

axis to avoid oscillations, and farther left for faster tran- 306

sient responses. We investigate whether sAIF, with re- 307

pression or degradation actuation, can achieve this. If 308

so, we analyze the achievable pole placement range and 309

its impact on the dynamics. 310

First, we aim at placing the three closed-loop poles at 311

the same location s = −a. As a result, the characteristic 312

polynomial is given by 313

p(s) = (s+ a)3 = s3 + 3as2 + 3a2s+ a3. (10)

Equating p(s) to the denominator of H(s) allows us to 314

express the designed PI gains (KP ,KI ) and cutoff fre- 315

quency ω0 in terms of the birth-death parameter γ1, the 316

sensing gain KS and the placed pole −a as 317

KP = 3a2−γ1(3a−γ1)
KS(3a−γ1)

, KI = a3

KS(3a−γ1)
, ω0 = 3a− γ1.

(11)
The sets of achievable PI gains and cutoff frequencies in 318

Equation 8 constrain the achievable poles s = −a to the 319

following regions on the real axis 320

Rep: (KP ,KI , ω0) ∈ Sn
r =⇒ sl(n)γ1 < a < su(n)γ1

Deg: (KP ,KI , ω0) ∈ Sd =⇒ a >
γ1
2
,

(12)
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Figure 5: Stochastic noise attenuation capabilities and limitations. (a) We examine a case study for the process to be regulated: a birth-death process. Note that the
square shaped arrowhead indicates either activation or repression. Two additional case studies for processes with a higher number of species are shown to exhibit the
same conclusions in SI Fig. S5. (b) The process is controlled by three different controllers: rAIF and sAIF, which supplement integral controllers with filtered feedforward
and proportional components, respectively, and a fP controller without an integrator. (c) displays the relationship between the coefficients of variation and expectations
at stationarity for the regulated output X1. The left plot corresponds to rAIF, while the right plot corresponds to sAIF and fP feedback. The key takeaway from these
plots is that rAIF can only increase noise compared to the open-loop scenario, while sAIF can attenuate noise to a certain extent, limited by a “hidden” proportional
component. The simulations support the notion that integral controllers amplify noise, whereas proportional controllers attenuate it. The solid black lines are calculated
analytically using Equation 13, while the various circles are computed empirically through the stochastic simulation algorithm 46, generating 104 − 105 trajectories on
the Euler cluster (https://scicomp.ethz.ch/wiki/Euler). Numerical values for the birth-death process are: γ1 = 0.1. The controller parameter values are as follows:
α = 2, θ = 1, κ = 0.05, η ∈ [10−2, 102], k ∈ [10−3, 1], δ ∈ [0.1, 20], µ ∈ [1, 10].

where sl(n) and su(n) are calculated analytically in SI321

Section S4. With degradation actuation, there is no322

theoretical upper limit on pole placement, as shown in323

Fig. 4(b), where poles can be moved far left to achieve an324

ideal step-like response. This highlights sAIF’s ability to325

fully shape the dynamics of a birth-death process, unlike326

rAIF. In contrast, repression actuation constrains pole327

placement to the open set R(n) = (−su(n)γ1,−sl(n)γ1).328

Without cooperativity (n = 1), we have sl(1) = su(1) = 1329

and thus R(1) is empty, making it impossible to place330

poles at the same location. For n = 2, R(2) expands331

(sl(2) ≈ 0.7082, su(2) ≈ 2.1769), showing cooperativity is332

necessary for single-location pole placement. Higher co-333

operativity (n > 2) further broadens R(n), as illustrated334

in Fig. 4(c). Finally, the case where repression is used335

without cooperativity (n = 1) is treated separately in SI336

Section S4. Here, the poles must be placed at two lo-337

cations. The transient response speed is shown to be338

limited by γ1, still exceeding the rAIF threshold of γ1/2.339

Additional details are in SI Fig. S3(d). Similar behav-340

iors were observed in the nonlinear stochastic simula-341

tions, as shown in SI Fig. S4, which depict the evolu-342

tion of average concentrations. This is expected, as the343

pole placement derived from the linearized deterministic344

models serves as an approximate analysis of the mean345

dynamics for the stochastic setting under the linear noise346

approximation.347

In conclusion, this case study demonstrates that348

sAIF outperforms rAIF in dynamic performance. Us-349

ing degradation for sAIF’s negative actuation allows ar-350

bitrary acceleration of the transient response of a birth-351

death process without overshoots or oscillations. While352

repression-based actuation also improves performance353

compared to rAIF, it cannot achieve arbitrary speed.354

However, this limitation is mitigated by adding cooper-355

ativity to the repression. Note that cooperativity does not356

help pole placement for the rAIF controller because, with357

KP = 0, only two degrees of freedom (KI , ω0) are avail-358

able to place the three poles of the transfer function in359

Equation 9. Thus, replacing the actuation u = kz1 with a360

cooperative Hill function still limits pole placement.361

Limits of Intrinsic Stochastic Noise Attenuation 362

This section examines the intrinsic noise attenuation ca- 363

pabilities of rAIF, sAIF, and fP controllers in the stochas- 364

tic setting. Noise is defined as the relationship between 365

the coefficient of variation (CV) and the expectation at 366

stationarity42. We consider the simple birth-death model 367

of Fig. 5(a) as the process, controlled by the rAIF, sAIF 368

and fP controllers of Fig. 5(b). Two processes with more 369

species are also presented in SI Fig. S5. Throughout the 370

analysis, the process parameter γ1 is fixed, and nega- 371

tive actuations are implemented as repression reactions. 372

In the open-loop case, the actuation u = α is constant, 373

resulting in a unimolecular network with closed moment 374

equations. The stationary CV of the output is explicitly 375

expressed in terms of the expectation as 376

CV
[
X̄L

]
=

√
1

E
[
X̄L

] . (13)

This analytical expression is shown as a solid black curve 377

in Fig. 5(c). Stochastic simulations for the closed-loop 378

scenarios with each controller are carried out to com- 379

pute stationary expectations and CVs across a range of 380

controller parameters. For rAIF, k, η, and µ are varied 381

with θ fixed. Results, shown as data points in Fig. 5(c) 382

(left), reveal that rAIF increases noise compared to the 383

open-loop case. For sAIF, η and µ are varied while α, κ, 384

and θ remain fixed. The simulation results, color-coded 385

by η, are depicted in Fig. 5(c) (right) and show that sAIF 386

control reduces noise below open-loop levels as demon- 387

strated previously by Kell et al.42 through similar simu- 388

lations and linear noise approximations. We show that 389

this observation generalizes to more complex regulated 390

processes in SI Fig. S5. The key distinction from42 is 391

that we uncover the control-theoretic basis for the ob- 392

served noise attenuation and identify its lower bound, as 393

described next. Comparable simulations for the fP con- 394

troller are carried out by varying δ with the remaining pa- 395

rameters matched to those of the sAIF controller. The re- 396

sults are shown as purple points in Fig. 5(c) (right). This 397

suggests that the noise attenuation in sAIF control is at- 398
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tributable to a “hidden” proportional component, rather399

than the integrator. In fact, as η increases in sAIF, noise400

rises, consistent with the proportional gain KP approach-401

ing zero as η → ∞.402

Motivated by the outcomes of stochastic simulations,403

we apply the linear noise approximation (LNA) technique404

to obtain analytical expressions for the CV in the case405

of a birth-death process. This analytical exploration is406

detailed in SI Section S5. Through this analysis, we an-407

alytically confirm the relationship observed between the408

deterministic and stochastic frameworks, demonstrating409

that noise levels indeed rise with an increase in η, and410

highlighting that the capacity of the sAIF controller to re-411

duce noise is bounded by its filtered-proportional com-412

ponent, as indicated in Equation S52.413

Steady-State Errors in Non-Ideal Settings414

In practice, controller species always dilute at some rate415

δ, as illustrated in Fig. 6(a). It is well-known that this di-416

lution effect introduces a “leaky integrator”, which results417

in a steady-state error20,22,31. This raises a reasonable418

question: given that steady-state error is inevitable with419

dilution, why not simply use a (filtered) proportional con-420

troller and avoid the added circuit complexity of incor-421

porating an additional controller species? The following422

theorem addresses this question by proving that even the423

non-ideal sAIF controller consistently outperforms the fil-424

tered proportional controller in terms of sensitivity to dis-425

turbances.426

Theorem 1. For any strictly monotonic regulated net-427

work under a constant disturbance ∆, operating in nega-428

tive feedback with either a non-ideal sAIF or filtered pro-429

portional (fP) controller, assume identical dilution rate δ430

and strictly monotonic actuation mechanisms hs for both431

controllers (see Fig. 6(a)). At any desired steady-state432

output x̄L = r, the steady-state sensitivities to the distur-433

bance satisfy434 ∣∣∣∣∂x̄L

∂∆

∣∣∣∣sAIF

<

∣∣∣∣∂x̄L

∂∆

∣∣∣∣fP .

Moreover, if either µ or θ is fixed and the other tuned to435

maintain x̄L = r, the sensitivity strictly decreases as the436

sequestration rate η increases.437

The proof can be found in SI Section S6.1.1. This re-438

sult is general and applies to the deterministic setting439

for any regulated process with a strictly monotonic dose-440

response. Figure 6(b) illustrates a numerical demonstra-441

tion, where the regulated process is a simple birth-death442

process (see Fig. 5(a)). Steady-state outputs are com-443

puted for various values of µ, θ, and η (non-ideal sAIF444

controller) and θp (fP controller), both before and after in-445

troducing a disturbance. The relative steady-state error,446

plotted against the output before the disturbance, is con-447

sistently lower for the sAIF controller compared to the fP448

controller. A more detailed plot for the same example can449

be found in Fig. S6 demonstrating that the lower bound450

of the error is achieved as η → ∞.451
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Figure 6: Non-ideal setting. (a) Closed-loop networks with non-ideal sAIF, rAIF, and
fP controllers. Here, the fP controller is the same as that in Fig. 5(b), while the non-
ideal sAIF and rAIF controllers now include dilution of the controller species at the
same rate δ. (b) Numerical demonstration showing the strictly lower steady-state
error achieved by the non-ideal sAIF compared to the fP controller. The regulated
network is a simple birth-death process with a disturbance affecting the degradation
rate. Parameters µ, θ, η, and θp are varied to plot the relative steady-state error
against the output before disturbance. The bottom plot shows time responses for
three cases, illustrating reduced error as η increases. More details including the
numerical values can be found in SI Fig. S6. (c) Actuation functions for sAIF and
rAIF controllers, ensuring fair comparison by matching the function values and their
derivative magnitudes (gain G). (d) Numerical comparison of steady-state errors for
non-ideal sAIF and rAIF controllers, using the same regulated network and distur-
bance as in panel (b). Parameters αr , αs, κr , and κs are varied to plot the relative
steady-state error against actuation gain and pre-disturbance output. The results
show a performance switch as x̄L crosses the threshold defined in Theorem 2. (e)
Comparison of noise between the non-ideal sAIF and fP controller. Both controllers
share the same actuation function hs, with µ, θ, η, δ, and θp varied while other
parameters remain fixed. Stochastic simulations are conducted to empirically plot,
in 3D, the stationary CVs against the stationary expectation and dilution rate δ. For
clarity, two slices are shown for δ ∈ {10−2, 10−1}. The results demonstrate that,
in practical settings where the repressor and dilution rate are identical for both con-
trollers, the non-ideal sAIF consistently performs as well as or better than the fP
controller. Numerical values can be found in SI Fig. S8.

We now present a theorem comparing the steady- 452

state sensitivities of the non-ideal sAIF and rAIF con- 453

trollers. 454

Theorem 2. For any strictly monotonic regulated net- 455

work under a constant disturbance ∆, operating in nega- 456

tive feedback with either a non-ideal sAIF or rAIF con- 457

troller, assume identical controller parameters µ, θ, η, 458

and δ for both controllers (see Fig. 6(a)). At any fixed 459

desired steady-state output x̄L, the steady-state sensi- 460
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tivities to the disturbance satisfy:461 
∣∣∣∣∂x̄L

∂∆

∣∣∣∣sAIF

<

∣∣∣∣∂x̄L

∂∆

∣∣∣∣rAIF

if x̄L >
µ

θ
− δ2

ηθ
,∣∣∣∣∂x̄L

∂∆

∣∣∣∣sAIF

>

∣∣∣∣∂x̄L

∂∆

∣∣∣∣rAIF

if x̄L <
µ

θ
− δ2

ηθ
,

assuming the absolute value of the actuation gains of462

both controllers are matched (see Fig. 6(c)).463

The proof can be found in SI Section S6.1.2. This re-464

sult provides a complete characterization of when the465

non-ideal sAIF and rAIF controllers outperform each466

other in terms of steady-state sensitivities to distur-467

bances. Notably, the condition is straightforward, de-468

pending solely on the desired steady-state level x̄L and469

the controller parameters µ, θ, and δ, without relying470

on the specifics of the regulated process. Figure 6(d)471

presents a numerical demonstration of relative steady-472

state error across a range of actuation gains and pre-473

disturbance outputs. The results clearly show that for a474

desired setpoint below µ/θ − δ2/ηθ, the non-ideal rAIF475

controller achieves lower error, while the non-ideal sAIF476

outperforms it above this threshold.477

We conclude this section by analyzing the trade-off478

between dynamic performance and steady-state error in479

the non-ideal setting. A comprehensive simulation study480

was performed, scanning all controller parameters for481

both sAIF and rAIF designs to jointly evaluate steady-482

state error and settling time. As shown in SI Fig.S7,483

the sAIF controller achieves faster settling times without484

sacrificing steady-state accuracy. As predicted by Theo-485

rem 2, the rAIF can yield slightly lower steady-state error486

at low setpoints, but only at the cost of longer settling487

times—highlighting the trade-off. The improved perfor-488

mance of sAIF is, once again, attributed to its propor-489

tional component, which offers an extra degree of control490

and helps relax this trade-off.491

Intrinsic Noise in Non-Ideal Settings492

Simulation studies in Fig. 5 and SI Fig. S8, supported by493

theoretical analysis, show that for a given setpoint, tun-494

ing the degradation rate δ of Z2 in the fP controller can495

achieve the lowest stationary CV compared to the sAIF496

controller for a fixed θ. However, in practice, tuning the497

degradation rate may be difficult, while tuning θ is easier498

(as done experimentally in Fig. 7). Furthermore, dilution499

affects both controllers similarly. To this end, we now ex-500

amine the stochastic setting of the fP and non-ideal sAIF501

controllers in Fig. 6(a), where the expressed repressor502

Z2 is identical for both controllers. This practical scenario503

focuses on the design question: given a shared repres-504

sor which dilutes at a rate δ, is it better to reduce noise505

with or without sequestration?506

The simulation study in Fig. 6(e) demonstrates that in507

this practical scenario, the non-ideal sAIF controller con-508

sistently performs as well as or better than the fP con-509

troller in reducing stationary noise. Using the same reg-510

ulated network as in Fig. 6(b), we vary µ, θ, and η for511

the non-ideal sAIF controller and θp for the fP controller512

across different values of δ. The CV and expectation 513

are computed and plotted in 3D, along with slices for 514

δ ∈ {10−2, 10−1}. The results clearly show that for any 515

E
[
X̄1

]
and δ, CV

[
X̄1

]sAIF ≤ CV
[
X̄1

]fP. This conclusion 516

holds also for more complicated regulated networks as 517

demonstrated in the numerical simulations of SI Fig. S8. 518

Motivated by the outcomes of our stochastic simula- 519

tions, we once again apply the LNA technique to obtain 520

analytical expressions for the CV in the case of a birth- 521

death process as detailed in SI Section S6.2. Through 522

this analysis, we obtain that for a fixed desired setpoint 523

E
[
X̄1

]
= r, we have ∂CV[X̄]

∂η

∣∣∣
η=0

< 0. This aligns with 524

the simulation results, showing that as we transition from 525

the filtered P controller (η = 0) to the non-ideal sAIF con- 526

troller (η > 0) at the same setpoint, the CV decreases. 527

Genetic Implementation 528

In this section, we build and test the sAIF and filtered 529

proportional controllers in E. coli. To do so, we leverage 530

the flexibility offered by inteins in building genetic control 531

systems26. 532

The genetic circuits used in the experiments are 533

shown in Fig. 7(a). Each circuit consists of three genes 534

distributed across three plasmids: Genes 1 and 2 form 535

the controller components, while Gene 3 represents the 536

regulated process. For clarity, dummy plasmids—used 537

to ensure similar plasmid burden across circuits but 538

which do not influence the regulated output—are not 539

shown in Fig. 7(a), but are fully detailed in SI Fig.S9(a). 540

The configuration of Genes 1 and 2 determines the 541

type of controller: three open-loop circuits are shown on 542

the left, filtered-proportional control in the center, and 543

sAIF control on the right. These circuits were care- 544

fully designed to minimize differences in genetic com- 545

ponents across configurations, enabling a fair compari- 546

son—particularly in relation to extrinsic noise, which is 547

not accounted for in the theoretical analysis. A more 548

detailed discussion of extrinsic noise is provided in the 549

following section. 550

We begin by introducing the open-loop systems which 551

are available in three configurations. Open Loop 1 (OL 1) 552

serves as the minimal non-actuated configuration. Gene 553

3—encoding the E. coli transcription factor AraC fused 554

to the red fluorescent protein mScarlet-I (denoted as 555

the regulated output X1)—is driven by a constitutive pro- 556

moter, with no interaction from controller components. 557

Open Loop 2 (OL 2) introduces the actuator Z2, encoded 558

by Gene 2, which resides on plasmid 2. This gene is 559

driven by a constitutive promoter and encodes a Tetracy- 560

cline Repressor (TetR) protein with a split intein IntC in- 561

serted into its dimerization domain. Gene 3 is driven by 562

the PTET promoter, which is repressed by TetR and can 563

be chemically induced using anhydrotetracycline (aTc). 564

Open Loop 3 (OL 3) builds on OL 2 by introducing Gene 565

1 on plasmid 1, which encodes a different split intein, 566

IntN. This enables intein-splicing between Z1 (IntN) and 567

Z2 (IntC), thereby sequestering TetR’s repressive func- 568

tion and modulating the regulation of X1. Like OL 2, 569
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Figure 7: Genetic implementation and experimental validation of intein-based feedback controllers in Escherichia coli. (a) Schematic diagrams of three Open Loop
configurations, Filtered Proportional (fP) Control, and sensor-based Antithetic Integral Feedback (sAIF) Control circuits. The controllers consist of Gene 1 and Gene 2,
which actuate the regulated process, represented by Gene 3, via the TetR protein which represses the PTET promoter. Gene 3 expresses the output of interest represented
by AraC fused to mScarlet-I, serving as a fluorescent reporter. Each gene is cloned on a separate plasmid. Note that anhydrotetracycline (aTc) serves as an external
perturbation in these experiments. (b) Time-course experiments displaying the dynamic response of the output to a disturbance induced by aTc at 1 hour, with 0.5%
arabinose present to enable feedback in closed-loop configurations. The blue and red curves represent the mean response of three biological replicates (depicted by the
colored dots at 30-minute intervals) for undisturbed and disturbed conditions, respectively. The shaded areas around the curves indicate the standard deviation from the
mean of these triplicates. It is important to note that the different configurations were deliberately chosen to ensure that the undisturbed responses would have similar levels,
all measured in Molecules of Equivalent Fluorochrome (MEF) units 47,48. See SI Fig. S10 for more comparisons at different steady-state levels. All circuits are observed to
reach a steady state, with the sAIF controller demonstrating an exceptionally small steady-state error and exhibiting favorable dynamic behavior. (c) Bar graphs showing
disturbance rejection capabilities of each circuit, across a wide range of setpoints, with the steady-state output levels normalized to the steady-state undisturbed levels
and indicated by different arabinose concentrations. Output levels, based on three biological replicate measurements, are ordered by increasing mean values. The color
shade of the bars (light/dark) indicates the expression strength of Gene 2 (weak/strong). Error bars reflect the standard deviations from the triplicate data. The displayed
results demonstrate the varied responses to disturbance: significant deviations in open-loop circuits, a moderate reduction in the disturbance effect with the fP controller,
and a near-complete eradication of disturbance in the sAIF controller circuit. The non-normalized data can be found in SI Fig. S11. (d) Simulation results incorporating
both intrinsic and extrinsic noise. This panel parallels Fig. 6(e), now including extrinsic noise from plasmid copy number variability. Results for the sAIF and fP controllers
are shown alongside the three open-loop configurations. See SI Fig. S9 for more details. (e) Noise properties in an sAIF controller: The histograms in the inset display
raw data for both the autofluorescence of cells and the output fluorescence for one instance of each closed-loop circuit and two open loop configurations, pointed out with
dashed circles, all with matched means. Using tools developed in 47,48, the undisturbed steady-state data from our circuits, shown in panel (c), as well as undisturbed OL
1 data, have been processed to remove debris, autofluorescence and outliers (see Methods). This leads to the scatter plot, which correlates the mean output expression
level with the coefficient of variation (CV) to compare the noise properties of the different control circuits. Three biological replicates are plotted, each circle representing
one biological replicate.

Gene 3 is driven by the PTET promoter and responds570

to aTc induction. In both OL 2 and OL 3, the promoter571

driving Gene 2 is varied between weak and strong ver- 572

sions, enabling tunable output levels. Note that OL 2 573
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with a strong promoter yields the lowest X1 expression574

due to stronger repression, while OL 3 with a weak pro-575

moter achieves the highest expression—benefiting from576

both reduced repression and active sequestration. In all577

open-loop configurations, there is no feedback from X1578

to the controller. The inducer aTc is reserved in these579

experiments for introducing external disturbances to as-580

sess the disturbance rejection capabilities of the various581

control architectures.582

Next, we introduce the filtered-proportional controller583

circuit, a design that is essentially achieved by a slight584

modification of the OL 2 configuration. The key adjust-585

ment involves substituting the constitutive promoter that586

drives Gene 2 with the PARA promoter. This promoter587

is activated by the AraC protein and can be induced by588

arabinose. This slight alteration establishes a feedback589

mechanism by incorporating a sensing reaction which590

monitors the level of the regulated output X1 and pro-591

vides a negative feedback response. Note that arabi-592

nose is reserved for tuning the setpoint (steady-state593

level of the regulated output X1) – more arabinose yields594

a lower setpoint, since arabinose plays a role similar to θ595

in Fig. 2(c). Similar to the setup in the open-loop configu-596

rations, the expression strength of Gene 2 is available in597

two levels: strong and weak. However, in contrast to the598

open-loop configuration, here, the variation in expression599

strength is achieved via ribozymes (see Methods). Fi-600

nally, we present the sAIF controller circuit. This design601

is, once again, derived from a minor, but essential, mod-602

ification to the filtered-proportional controller circuit. This603

primary change introduces Gene 1, as in OL 3, thus en-604

abling the intein splicing reaction in the feedback loop605

which lies at the heart of the sAIF topology depicted in606

Fig. 3(a).607

We close this section by pointing out that we did not608

construct an intein-based rAIF controller for direct com-609

parison in this study. Experimental comparison between610

rAIF and sAIF circuits is nontrivial, as they rely on dif-611

ferent actuator parts. In contrast, the sAIF and filtered612

proportional controllers share the same actuator, allow-613

ing for a more direct comparison.614

Experimental Assessment of the Genetic Controllers615

After constructing the genetic circuits, we evaluated their616

performance, focusing on their temporal response, their617

ability to reject disturbances and their noise properties.618

Fig. 7(b) shows the results of time-course experiments619

that examined the transient responses of the circuits to620

the addition of 0.5 ng/mL of aTc as an external dis-621

turbance at time t = 1h. In the experiments involv-622

ing closed-loop configurations, 0.5% arabinose was in-623

troduced to activate the sensing mechanisms and to624

adjust the setpoint to levels comparable to those ob-625

served in the open-loop configuration. It was observed626

that all circuits reached a steady state within a 6-hour627

period. As expected, the open-loop circuits demon-628

strated a significant deviation from its undisturbed state.629

The filtered-proportional controller circuit was more ef-630

fective in mitigating the disturbance impact compared to631

the open-loop setup, though it still exhibited a residual 632

steady-state error. The sAIF controller circuit, however, 633

was notably successful in almost completely rejecting 634

the disturbance, thereby achieving RPA. Indeed, the re- 635

sponses with and without disturbance settle to levels in- 636

distinguishable within the precision of triplicate measure- 637

ments. 638

To further explore disturbance rejection across various 639

setpoints, we introduced a range of arabinose concentra- 640

tions (ranging from 0.2 − 2%) and recorded the steady- 641

state output levels with and without the aTc disturbance. 642

These findings, depicted in the bar graphs of Fig. 7(c), 643

are normalized to their respective undisturbed states and 644

are organized by ascending output levels on the x-axis. 645

Unnormalized plots are provided in SI Fig. S11. The 646

results reinforced our expectations: the open-loop cir- 647

cuits failed to counteract the disturbance, showing large 648

steady-state errors. In contrast, the filtered-proportional 649

controller reduced the disturbance’s impact to an aver- 650

age steady-state error of 19%, and the sAIF controller 651

excelled by nearly eradicating the disturbance, leading to 652

a minimal steady-state error of just 2%. This insignificant 653

steady-state error is within the error bars of the biologi- 654

cal triplicates. Interestingly, the impact of the aTc distur- 655

bance was more pronounced at lower setpoints (which 656

correspond to higher arabinose levels), suggesting a di- 657

minished sensitivity to this disturbance at lower TetR con- 658

centrations. 659

Next, we examine the experimental noise properties 660

of the various built circuits. However, the experimen- 661

tal setup cannot be directly compared to the theoret- 662

ical analysis in Fig. 6(e), as the experiments include 663

both intrinsic and extrinsic noise, whereas the theoreti- 664

cal analysis considers only intrinsic noise. As such, we 665

performed additional simulations incorporating extrinsic 666

noise, specifically due to variability in plasmid copy num- 667

bers, using data from49 that match the plasmid origins 668

of replication we use. Since circuits with more plasmids 669

introduce more extrinsic noise, this factor is critical for a 670

fair comparison. We simulated and experimentally mea- 671

sured all the circuits in Fig.7(a). Simulation details, com- 672

bining both intrinsic and extrinsic noise, are provided in 673

SI Fig. S9 and the results are summarized in Fig.7(d), 674

where the CV is plotted against the mean and the dilu- 675

tion rate δ as in Fig. 6(e). With both intrinsic and extrin- 676

sic noise present, sAIF does not reduce noise relative 677

to OL 1 (no actuator). This contrasts with the idealized 678

intrinsic-only setting (Fig. 5), where sAIF can attenuate 679

noise relative to OL1. When extrinsic noise is included, 680

simulations show at most a very narrow, marginal atten- 681

uation window—too small to be reliably observed exper- 682

imentally. This limitation arises because it is designed 683

to involve three different plasmids compared to only one 684

plasmid in the OL 1 configuration, amplifying extrinsic 685

variability. However, when compared to OL 2—which 686

uses only one additional plasmid to house the actua- 687

tor gene expressing Z2—the sAIF and filtered propor- 688

tional controllers do reduce total noise. This indicates 689

that, despite housing the genes on more plasmids yield- 690

ing higher extrinsic noise, the sAIF controller remains 691
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effective at attenuating noise relative to more compara-692

ble open-loop designs (OL 2 and 3). The OL 2 scenario693

is particularly relevant in practice, as regulating the pro-694

cess through an external actuator component (e.g. tran-695

scription factor or chemical inducer) is often necessary696

and offers greater flexibility in both design and tuning,697

compared to modifying the promoter that directly drives698

the process. The corresponding experimental results are699

presented in Fig. 7(e). Note that the histograms shown700

in the inset display the distributions for a single instance701

of each circuit from the scatter plot pointed out in dashed702

circles, prior to the processing that removes autofluores-703

cence and outliers. This analysis demonstrated that the704

sAIF controller not only ensures RPA but also decreases705

noise levels below those found in the open-loop config-706

uration with comparable number of plasmids, i.e. OL 2707

and 3, particularly at lower setpoints. Additionally, the708

data reveal that the noise-reducing capability of the sAIF709

controller in this example is comparable to that of the710

filtered-proportional controller.711

Lastly, in SI Fig. S12, we include previously published712

data from Aoki et al.22, in which an rAIF controller was713

implemented in E. coli using Sigma/anti-Sigma seques-714

tration and successfully achieved RPA at the population715

level. However, unlike the sAIF controller, the rAIF re-716

sulted in a more than fourfold increase in CV relative to717

its open-loop counterpart. It is important to note that this718

open-loop circuit also included the controller gene (sim-719

ilar to OL 2), meaning the comparison was not made720

against a minimal open-loop system without actuator721

species (i.e. OL 1). Additionally, due to significant dif-722

ferences in experimental setups and genetic parts, our723

experiment does not attempt a direct comparison be-724

tween rAIF and sAIF noise levels. Rather, both stud-725

ies perform relative comparisons within their respective726

contexts. In our case, the sAIF controller reduces noise727

at low expression level where noise is prominent com-728

pared to its corresponding actuated open-loop configu-729

rations (OL 2 and OL 3 in Fig. 7(a)) - a feature that the730

rAIF controller in22 did not achieve. However, in this work731

we have not disentangled topology from part-specific ef-732

fects. Staging a fair comparison between sAIF and rAIF733

that takes into account the different parts (such as split734

inteins and sigma/anti-sigma pairs) and their associated735

extrinsic noise remains an important future direction.736

Discussion737

Achieving homeostasis is crucial in regulating cellular738

processes in living cells, which are inherently noisy and739

uncertain. While RPA is an important property that en-740

dows the system with homeostasis, it is often not suffi-741

cient for achieving high dynamic performance. Further-742

more, achieving RPA at the population level may come at743

the cost of high cell-to-cell variability20 or elevated ener-744

getic burden42. Therefore, it is vital to develop biomolec-745

ular controllers that can deliver both RPA and high per-746

formance, taking into account the inherent variability of747

living cells. While integral controllers are usually the748

suitable choice to achieve RPA at the population level, 749

proportional controllers are often added on top of the 750

integrators to enhance the dynamic performance and 751

reduce noise or cell-to-cell variability32,34. In previous 752

works, such addition was realized by adding extra cir- 753

cuitry which could be biologically demanding, although 754

unavoidable in certain scenarios. In this paper, we have 755

shown that a slight variant of the standard rAIF controller 756

(see the sAIF topology in Fig. 3(a)) gives rise to a (fil- 757

tered) PI controller without adding the extra circuitry. We 758

also demonstrated analytically and through simulations 759

that this variant indeed brings in the benefits of the pro- 760

portional controller while maintaining the RPA property 761

offered by the integrator. 762

The sAIF controller was first introduced in20 Fig. S1 763

as one of several realizations of AIF control. More re- 764

cently, a stochastic analysis employing linear noise ap- 765

proximation was conducted in42 to show that this variant 766

is capable of reducing noise when controlling a birth- 767

death process. Our study reveals that it is precisely 768

the “hidden” proportional component which is responsi- 769

ble for this noise reduction, and not the integrator. This 770

is demonstrated in Fig. 5 when regulating not only a 771

birth-death process but also a gene expression process 772

with and without protein maturation (see SI Fig. S5). 773

We also demonstrate analytically and through simula- 774

tions that the “hidden” proportional component not only 775

reduces noise, but also enhances the dynamic perfor- 776

mance. Interestingly, this seemingly minor, but subtle, 777

alteration in the choice of the actuating species yields a 778

different controller architecture which tangibly offers bet- 779

ter responses. The intuition behind this improvement lies 780

in the fact that the altered choice of actuating species 781

cascades both a filtered proportional controller and an 782

integral controller, resulting in the best of both worlds. 783

This finding has practical implications as it offers a mini- 784

mal design for biomolecular PI controllers which is easier 785

to build. Furthermore, this minimal design serves as a 786

fundamental principle for constructing negative feedback 787

controllers using a given repressor. As demonstrated 788

in Theorem 1 and supported by theoretical and compu- 789

tational analysis, incorporating sequestration alongside 790

the repressor consistently improves adaptation compro- 791

mising noise attenuation compared to using the repres- 792

sor alone. 793

Leveraging the simple design, we have genetically 794

engineered the sAIF controller in E. coli using in- 795

teins. We used our previously reported TetR-IntC(Gp41- 796

1)/IntN(Gp41-1) pair26 for all gene circuits, with no de- 797

tectable off-target activity. Although we did not perform 798

an extensive characterization of Gp41-1 in this study, this 799

is a widely used and characterized split intein, due to 800

its small size, rapid splicing kinetics, and reliable per- 801

formance50–54. As an added benefit, Gp41-1 is part of 802

a library of orthogonal split inteins validated in vivo in 803

E. coli 53, supporting its potential for multiplexing, scale 804

up, and incorporation into more complex circuits. Our 805

experimental results successfully demonstrated the con- 806

troller’s capabilities in achieving RPA, favorable transient 807

dynamics and noise reduction. Indeed, our experimen- 808
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tal findings confirm that the sAIF controller is capable809

of reducing the noise levels below those observed in a810

parts-matched open-loop configuration where the net-811

work is regulated by an actuator. The reduction is clearly812

observed experimentally at low expression levels where813

noise is prominent.814

Although the previously tested rAIF controller22 is not815

directly comparable to our sAIF controller due to differ-816

ences in biological parts, it is worth noting that it exhib-817

ited a more than four-fold increase in noise relative to its818

own open-loop configuration, which also involved regu-819

lation by an actuator species. While not directly compa-820

rable, the results are nonetheless informative in assess-821

ing the potential of the sAIF architecture. A direct com-822

parison between rAIF and sAIF using matched biological823

parts remains an important direction for future work.824

Our theoretical analysis focused on intrinsic noise,825

which, while present in our experimental data, is inter-826

twined with extrinsic noise arising from our multi-plasmid827

design. To account for this additional noise source, we828

conducted a comprehensive simulation study incorporat-829

ing intrinsic and extrinsic noise in the form of plasmid830

copy-number variability (see Fig. 7(d)). The experimental831

results show that at low expression levels—where noise832

is most pronounced—the sAIF controller exhibits lower833

total noise than open-loop circuits that include the actu-834

ator (OL2 and OL3), consistent with the simulation re-835

sults. Two key future directions emerge from this work:836

(1) designing circuits with measurement modalities capa-837

ble of disentangling intrinsic and extrinsic noise to study838

them separately, and (2) embedding controller genes on839

the same plasmid to reduce variability from plasmid copy840

number—while carefully avoiding gene interference.841

Our theoretical analysis has demonstrated that the842

choice of actuation mechanisms plays a critical role in fa-843

cilitating these enhancements. Specifically, degradation-844

based actuation mechanisms exhibited the best perfor-845

mance in shaping the transient dynamics. Although our846

genetic implementation, which utilizes TetR as a repres-847

sor for actuation, has already shown significant improve-848

ments, we anticipate that alternative designs incorpo-849

rating degradation could unlock even greater enhance-850

ments. Exploring these possibilities remains an avenue851

for future research. Additionally, future work involves852

testing our controllers in more complex regulatory sys-853

tems, where unintended interactions and cellular bur-854

den may become significant. Although we observed no855

significant signs of cellular burden—evidenced by the856

monotonic steady-state responses in SI Fig. S11 and857

unchanged cell densities indicating no impact on growth858

rate—burden may still arise when regulating more com-859

plex networks. It would also be valuable to experimen-860

tally investigate the effects of severe disturbances that861

could induce integral windup, and to build genetic cir-862

cuits capable of preventing or mitigating such effects, as863

proposed in41.864

The first genetically engineered PI controllers in mam-865

malian cells, utilizing sense/anti-sense RNAs, was re-866

ported by Frei et al.27. Our work introduces the first867

successful implementation of a PI controller in bacteria,868

marking a significant milestone. Unlike the previous ap- 869

proach that relied on a proxy for the output molecules to 870

implement proportional control, our sAIF controller em- 871

ploys a minimal design. This design enables the re- 872

alization of both proportional and integral components 873

through a single actuation reaction, thus avoiding the 874

need for additional genetic parts or proxies. 875

Our implementation in bacteria underscores the versa- 876

tility of inteins as a genetic tool applicable across diverse 877

life forms. In fact, the simplicity in the design, coupled 878

with the exquisite role of inteins in bridging theoretical 879

constructs and practical implementations, sets the stage 880

for the promising deployment of such controllers across 881

diverse domains intersecting with synthetic biology. This 882

holds the potential for significant advancements in sec- 883

tors where precise and swift biomolecular regulation is 884

essential, including biotechnology, metabolic engineer- 885

ing, and cell therapy, among others. 886
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M.A., Ernst, L., Khammash, M., and Di Ventura, B.1138

(2021). Engineering arac to make it responsive to1139

light instead of arabinose. Nature chemical biology1140

17, 817–827.1141

61. Chung, C., Niemela, S.L., and Miller, R.H. (1989).1142

One-step preparation of competent escherichia coli:1143

transformation and storage of bacterial cells in1144

the same solution. Proceedings of the National1145

Academy of Sciences 86, 2172–2175.1146

62. Baumschlager, A., Aoki, S.K., and Khammash, M.1147

(2017). Dynamic blue light-inducible t7 rna poly-1148

merases (opto-t7rnaps) for precise spatiotemporal1149

gene expression control. ACS synthetic biology 6,1150

2157–2167.1151

63. Galbusera, L., Bellement-Theroue, G., Urchueguia,1152

A., Julou, T., and van Nimwegen, E. (2020). Us-1153

ing fluorescence flow cytometry data for single-cell1154

gene expression analysis in bacteria. PloS one 15,1155

e0240233.1156

STAR METHODS1157

Growth Conditions1158

Escherichia coli cells were grown in M9 medium sup-1159

plemented with 0.2% casamino acids, 0.4% glucose,1160

0.001% thiamine, 0.00006% ferric citrate, 0.1 mM cal-1161

cium chloride, 1 mM magnesium sulfate, and 20 µg/mL1162

uracil (Sigma-Aldrich Chemie GmbH), and incubated in1163

an environmental shaker (New Brunswick) at 37◦C with1164

shaking at 230 rpm. Antibiotics (Sigma-Aldrich Chemie1165

GmbH) were used at the following concentrations: car-1166

benicillin (carb), 100 µg/mL; spectinomycin (spec), 1001167

µg/mL; chloramphenicol (cam), 34 µg/mL.1168

E. coli Host Strain1169

Host strain SKA360 (MG1655 ∆araCBAD ∆lacIZYA1170

∆araE ∆araFGH attB::lacYA177C ∆rhaSRT1171

∆rhaBADM) is a precursor strain to SKA703 con-1172

structed as previously described in22.1173

E. coli Plasmids 1174

All plasmids (Table S1) were constructed from a custom- 1175

made library of parts with optimized overhangs55 us- 1176

ing standard Golden-Gate assembly methods and mod- 1177

ular cloning (MoClo)56 with restriction enzymes BsaI- 1178

HF v2 and BbsI-HF (New England Biolabs). Cir- 1179

cuit modules were split between three different plas- 1180

mids. The Gene 1 plasmids contain either intC(gp41- 1181

1) or intN(gp41-1)26,50 under a Bba J23119 consti- 1182

tutive promoter and weak B0033 ribosomal binding 1183

site (RBS) from the Registry of Standard Biological 1184

Parts on a medium copy plasmid with p15A origin 1185

of replication and aminoglycoside adenylyltransferase 1186

(specR) gene. The Gene 2 TetR-IntC plasmids con- 1187

sist of a tetR(1-183)::intC(gp41-1)::tetR(184-212) fu- 1188

sion26 under the control of either a modified ParaB 1189

promoter22 and weak B0033 RBS or AraJ-B0033m ri- 1190

bozyme/RBS (for the weak and strong filtered propor- 1191

tional and sAIF circuits, respectively)57 or a Bba J23111 1192

or Bba J23119 constitutive promoter from the Registry 1193

of Standard Biological Parts (for the weak and strong 1194

open-loop circuits, respectively) and weak B0033 RBS 1195

on a low copy plasmid with pSC101 origin of replica- 1196

tion and chloramphenicol-acyltransferanse (camR) gene. 1197

The regulated Gene 3 output plasmid consists of a 1198

V5::araC::mScarlet-I fusion22,58 under the control of a 1199

PLtetO−1 promoter59 and weak B0033 RBS on a high 1200

copy plasmid with ColE1 origin of replication and beta- 1201

lactamase (carbR) gene. Additionally, a set of unregu- 1202

lated Gene 3 output plasmids with V5::araC::mScarlet- 1203

I under a weak B0033 RBS and constitutive promoters 1204

Bba J23114, Bba J23106, Bba J23102, Bba J23111, 1205

Bba J23119 from the Registry of Standard Biological 1206

Parts as well as J23101*, a modified weaker variant 1207

of Bba J23101*60 were constructed using the same 1208

backbone as the regulated Gene 3 output plasmid. 1209

Plasmids were transformed into E. coli host strain 1210

SKA360 for testing as previously described61. The 1211

plasmid combinations used for each circuit are listed 1212

in Table S2. Plasmid sequences are available at the 1213

following Github repository https://github.com/Maurice- 1214

Filo/Sensor-Based-Biomolecular-Integral-Controllers. 1215

E. coli Steady-State Experiments 1216

200 µl aliquots of M9 medium in 96-well flat-bottom 1217

plates (Greiner) with appropriate antibiotics were inoc- 1218

ulated with the circuit strains from glycerol freeze stocks. 1219

The plates were covered with BreathSeal film (Greiner) 1220

and a plastic lid (Greiner) and were incubated overnight 1221

at 37◦C with shaking to stationary phase. In the morn- 1222

ing, cultures were diluted 1:1,200,000 in fresh 200 µl 1223

aliquots of M9 medium in 96-well flat-bottom plates con- 1224

taining arabinose (Sigma-Aldrich) at final concentrations 1225

of 0%, 0.2%, 0.35%, 0.5%, 0.75%, 1%, 1.5%, or 2% with 1226

or without 0.5 ng/mL anhydrotetracycline (aTc, Chemie 1227

Brunschwig). Plates were covered with BreathSeal film 1228

and plastic lids and incubated for six hours at 37◦C with 1229

shaking. After six hours of shaking, all cultures were in 1230

exponential phase (optical density at 600 nm (OD) less 1231
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than 0.1). As previously described, cell growth, tran-1232

scription, and translation were stopped with a rifampicin-1233

tetracycline solution and the mScarlet-I was matured for1234

three hours at 37◦C62. Matured samples were stored at1235

4◦C overnight and samples were measured by flow cy-1236

tometry on a CytoFlex S (Beckman Coulter) the next day1237

with a minimum of 50,000 events recorded. As a no-1238

fluorescence control, host strain SKA360 was cultured,1239

processed, and measured in parallel with the other sam-1240

ples. Rainbow calibration beads (Spherotech, RCP-30-1241

5A) were also measured in the same run as each exper-1242

iment with a minimum of 50,000 events collected.1243

Open loop 2 (OL 2), open loop 3 (OL 3), filtered1244

proportional (fP), and sensor-based Antithetic Integral1245

Feedback (sAIF) circuits were tested together in parallel,1246

along with a no-fluorescence control (empty host strain1247

SKA360) and rainbow calibration beads (Spherotech,1248

RCP-30-5A), to ensure that all circuits were assayed un-1249

der identical conditions and could be directly compared1250

within each experiment. Single-plasmid experiments us-1251

ing open loop 1 (OL 1) were performed separately in1252

M9 medium without arabinose or aTc along with the no-1253

fluorescence control and rainbow calibration beads. All1254

experiments were performed on three independent days1255

(biological replicates). Each OL 2, OL 3, fP, and sAIF1256

circuit experiment included one sample per strain and1257

condition, whereas OL 1 experiments were conducted1258

with three technical replicates. Corresponding data are1259

shown in Figures 7(c) and 7(e).1260

E. coli Dynamic Experiments1261

For this experiment, it was important that the cells were1262

kept in exponential phase. A 3 mL aliquot of M9 medium1263

containing appropriate antibiotics and 0.5% arabinose1264

was inoculated with cells from glycerol freeze stocks at1265

a low OD so that after approximately 10 hours of incu-1266

bation overnight at 37◦C and 230 rpms, cultures were at1267

an OD between 0.01 and 0.03. The exponential phase1268

culture was then used to start pseudo-time course ex-1269

periments. Briefly, the time courses were split into two1270

phases. The first phase was one hour of growth in 0.5%1271

arabinose to ensure that the cultures were at steady-1272

state and to assess the output level without any distur-1273

bance. The second phase was six additional hours of1274

growth in 0.5% arabinose with or without a constant 0.51275

ng/mL aTc disturbance. Cultures for time points 0-1 h1276

were set up simultaneously and sampled every 30 min-1277

utes. After 1 h of growth, cultures for time points 1.5-71278

h (with and without aTc) were set up simultaneously and1279

sampled every 30 minutes. After collecting all the time1280

points, mScarlet-I was matured for all the samples at the1281

same time and matured samples were measured at the1282

same time on the flow cytometer.1283

Dilution strategy for time points 0 -1h1284

The overnight exponential culture was diluted to an OD1285

of 0.006 in 1.2 ml M9-0.5% arabinose. This initial 0.0061286

OD dilution mix was used to inoculate 200 µl of M9-1287

0.5% arabinose in column 2 of a 96-well flat-bottom1288

plate (Greiner) with one row per circuit strain (Plate 1289

1). The remaining dilution mix was further diluted 2.3- 1290

fold in M9-0.5% arabinose and 200 µl aliquots of cells 1291

were aliquoted in columns 3-5 of the same 96-well plate. 1292

Empty wells were filled with 200 µl PBS and the plate 1293

was covered with a BreathSeal film and plastic lid and 1294

incubated at 37◦C with shaking. 1295

Dilution strategy for time points 1-7h 1296

For the no disturbance (0 ng/mL aTc) condition, 96-well 1297

Plates 2 and 3 were prepared by aliquoting 200 µl M9- 1298

0.5% arabinose into Plate 2 columns 2-11 and Plate 3 1299

columns 2-3. For the disturbance (0.5 ng/mL aTc) con- 1300

ditions, Plates 4 and 5 were prepared by aliquoting 200 1301

µl M9-0.5% arabinose-0.9375 ng/ml aTc into Plate 4 col- 1302

umn 2 and 200 µl M9-0.5% arabinose-0.5 ng/ml aTc into 1303

Plate 4 columns 3-11 and Plate 5 columns 2-3. At time 1 1304

h, Plate 1 columns 4 and 5 were combined together and 1305

used to inoculate the 200 µl aliquots of media in Plate 2 1306

and Plate 4 column 2 with 175 µl culture (2.3-fold dilu- 1307

tion). The wells were pipetted up and down to mix and 1308

175 µl was transferred to the 200 µl of media in column 1309

3 of the same plate. This serial dilution procedure was 1310

continued for the remaining columns of Plates 2 and 4. 1311

175 µl of diluted culture in column 11 of Plates 2 and 4 1312

were then used to continue the serial dilutions into Plates 1313

3 and 5 column 2, respectively. 1314

Sample collection, mScarlet-I maturation and mea- 1315

surement 1316

The experimental protocol was set up so that each col- 1317

umn was one 30 minute time point. For each time point, 1318

100 µl of culture was collected and mixed with 100 µl 1319

rifampicin-tetracycline solution in 96-well plates on ice to 1320

stop cell growth, transcription, and translation62. Plates 1321

were kept on ice in the dark until all time points were 1322

sampled. After sampling the last point, the plates were 1323

kept on ice for one hour before covering with a Breath- 1324

Seal film and maturing the mScarlet-I for three hours at 1325

37◦C. Matured samples were stored at 4◦C overnight 1326

and samples were measured on a CytoFlex S the next 1327

day with a minimum of 20,000 events recorded. Time 0 h 1328

was collected from leftover dilution mix used to inoculate 1329

Plate 1. Time 0.5 h was from Plate 1 column 2. Time 1330

1h was from Plate 1 column 3. Time 1.5-6 h was from 1331

Plates 2 and 4 starting with column 2 and ending with 1332

column 11 (one column per 30 minutes). Time 6.5-7 h 1333

was from Plates 3 and 5 starting with column 2 and end- 1334

ing with column 3 (one column per 30 minutes).As a no- 1335

fluorescence control, host strain SKA360 was cultured, 1336

processed, and measured at time 7h in parallel with the 1337

other samples. Rainbow calibration beads (Spherotech, 1338

RCP-30-5A) were also measured in the same run as 1339

each experiment with a minimum of 50,000 events col- 1340

lected. 1341
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Flow Cytometry1342

All samples were measured on a CytoFlex S flow cy-1343

tometer (Beckman Coulter) equipped with a 96-well1344

plate sample loader using CytExpert version 2.4.0.28.1345

mScarlet-I was measured with a 561 nm lasesr and1346

610/20 bandpass filter (ECD-H); the gain settings were1347

as follows: forward scatter 100, side scatter 100,1348

mScarlet-I 1000. Thresholds of 2,500 FSC-H and 1,0001349

SSC-H were used for all samples.1350

Data Analysis1351

All flow cytometry files were processed using the python1352

package FlowCal as previously described47. Briefly,1353

events were gated by SSC-H and FSC-H using a gate1354

fraction of 0.3. mScarlet-I fluorescence (ECD-H) was1355

then converted to Molecules of Equivalent Fluorochrome1356

(MEF) using Rainbow calibration bead (Spherotech,1357

RCP30-5A) measurements performed on the same day1358

as each experiment.1359

The arithmetic mean and variance of the cell popula-1360

tions was calculated using the Python package NoiseC-1361

ontrol as previously described48.1362

Briefly, the python script first trims the FlowCal-1363

processed data to remove a small number of outliers.1364

Trimming is based on a kernel density estimate of the1365

log-fluorescence distribution, used to identify the fluo-1366

rescence range around the median where the density1367

exceeds a 0.5% threshold. Then, the script subtracts1368

autofluorescence, obtained from the untransformed host1369

strain SKA360 measure on the same day as each exper-1370

iment, as follows1371

E[Y ] = E[Ytot]− E[Yaf]

CV[Y ] =

√
CV[Ytot]

2 E[Ytot]
2 − CV[Yaf]

2 E[Yaf]
2

E[Ytot]− E[Yaf]
,

where Yaf is the autofluorescence and Ytot is the total flu-1372

orescence. We also analyzed our data using a different1373

pipeline63 and the conclusions remained unchanged.1374

All experimental data was plotted in Python while com-1375

putational simulations were carried out and plotted in1376

MATLAB.1377

Code Availability1378

The MATLAB and Python codes generated in this1379

study can be found at the following Github repos-1380

itory https://github.com/Maurice-Filo/Sensor-Based-1381

Biomolecular-Integral-Controllers.1382
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S1 Transfer Functions

Let (x̄, z̄1, z̄2) denote the closed-loop fixed point when operating at a nominal exogenous input µ̄. Furthermore, let
(x̃, z̃1, z̃2) denote the perturbation from the closed-loop fixed point due to a disturbance or a perturbation µ̃ of the
exogenous input from its nominal value. That is, we have

µ(t) = µ̄+ µ̃(t); x(t) = x̄+ x̃(t); zi(t) = z̄i + z̃i(t), (S1)

for i = 1, 2. Let x̂, ẑ1, ẑ2, µ̂ and û respectively denote the Laplace transforms of x̃, z̃1, z̃2, µ̃ and ũ. For the actuation
function h, define the partial derivatives as ∂h(z̄1, z̄2, x̄L; x̄1) ≜

[
σ1 −σ2 −σL σx

]
with σ1, σ2, σL ≥ 0, and let ei

be a vector of an appropriate size whose entries are all zeros except the ith-entry being 1.

S1.1 Proportional & Feedforward Controllers

Consider the following closed-loop dynamics 
ẋ = f(x) + ue1

ż1 = µ− δ′z1

ż2 = θxL − δz2,

(S2)

where the control action is given as u = h(z1, z2, xL;x1) to encompass the two basic controller motifs listed in Fig. 2(c)
and an additional controller where XL directly actuates X1 since now h is allowed to, more generally, depend on xL.
The approximated perturbation dynamics are thus given by the linearization that can be written separately for the
process P and the controller C as

P : ˙̃x =
[
∂f(x̄) + σxe1e

T
1

]︸ ︷︷ ︸
Ap

x̃+ ũe1

C :

[
˙̃z1
˙̃z2

]
=

[
−δ′ 0
0 −δ

]
︸ ︷︷ ︸

Ac

[
z̃1
z̃2

]
+

[
0 1
θ 0

]
︸ ︷︷ ︸

Bc

[
x̃L
µ̃

]

ũ =
[
σ1 −σ2

]︸ ︷︷ ︸
Cc

[
z̃1
z̃2

]
+
[
−σL 0

]︸ ︷︷ ︸
Dc

[
x̃L
µ̃

]
,

(S3)

where, for convenience and with a slight abuse of notation, σx is absorbed in the dynamics of the process and so ũ
does not involve x̃1. Taking the Laplace transforms on both sides of the equalities in Equation (S3) and recalling that
the transfer matrix of the controller is Cc(sI −Ac)

−1Bc +Dc yields the following transfer functions

P : x̂L(s) = P (s)û(s) ≜ eTL(sI −Ap)
−1e1û(s)

C : û(s) = KF
ω′
0

s+ ω′
0

µ̂(s)−
[
KP

ω0

s+ ω0
+K ′

P

]
x̂L(s),

(S4)

where

KF ≜
σ1
δ′
, KP ≜

σ2θ

δ
, K ′

P ≜ σL, ω0 ≜ δ, ω′
0 ≜ δ′.

As a result, the two cases presented in Fig. 2(c) can be directly obtained from Equation (S4) by choosing the control
action u = h(z1, z2, xL;x1) appropriately which leads to setting a subset of the partial derivatives σ1, σ2, σL and σx to
zero.

S1.2 Proportional-Integral Controllers

Consider the following closed-loop dynamics 
ẋ = f(x) + ue1

ż1 = µ− ηz1z2

ż2 = θxL − ηz1z2,

(S5)

where the control action is given as u = h(z1, z2, xL;x1) to encompass the two cases presented in Fig. 3(a) and (b),
and an additional controller where XL directly actuates X1 since now h is allowed to, more generally, depend on xL.
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The approximated perturbation dynamics are thus given by the linearization that can be written separately for the
process P and the controller C as

P : ˙̃x =
[
∂f(x̄) + σxe1e

T
1

]︸ ︷︷ ︸
Ap

x̃+ ũe1

C :

[
˙̃z1
˙̃z2

]
=

[
−ηz̄2 −ηz̄1
−ηz̄2 −ηz̄1

]
︸ ︷︷ ︸

Ac

[
z̃1
z̃2

]
+

[
0 1
θ 0

]
︸ ︷︷ ︸

Bc

[
x̃L
µ̃

]

ũ =
[
σ1 −σ2

]︸ ︷︷ ︸
Cc

[
z̃1
z̃2

]
+
[
−σL 0

]︸ ︷︷ ︸
Dc

[
x̃L
µ̃

]
,

(S6)

where, for convenience and with a slight abuse of notation, σx is absorbed in the dynamics of the process and so ũ
does not involve x̃1. Taking the Laplace transforms on both sides of the equalities in Equation (S6) and recalling that
the transfer matrix of the controller is Cc(sI −Ac)

−1Bc +Dc yields the following transfer functions

P : x̂L(s) = P (s)û(s) = eTL(sI −Ap)
−1e1û(s)

C : û(s) =

[
KI

s
ê(s) +KF µ̂(s)−KPKS x̂L(s)

]
ω0

s+ ω0
−K ′

px̂L(s),
(S7)

where 
KI ≜

σ1z̄1 + σ2z̄2
z̄1 + z̄2

, KF ≜
σ1

η(z̄1 + z̄2)
, K ′

P ≜ σL,

KP ≜
σ2

η(z̄1 + z̄2)
, ω0 ≜ η(z̄1 + z̄2), KS ≜ θ.

(S8)

As a result, the two cases presented in Fig. 3 can be directly obtained from Equation (S7) by choosing the control
action u = h(z1, z2, xL;x1) appropriately which leads to setting a subset of the partial derivatives σ1, σ2, σL and σx to
zero.

S2 Mappings between Filtered PI and Biomolecular Parameters

Throughout the subsequent analysis, we will make an assumption about the process. Let Fi (i = 1, 2, ..., L) denote the
steady-state maps of the process, that is, if u is a constant then with reference to the first equation in Equation (S5),
we write

f(x) + ue1 = 0 =⇒ xi = Fi(u). (S9)

Assumption 1. Assume that for the desired steady-state output x̄L = r, there exists a feasible supporting input ū and
steady-state concentrations of the process species x̄i, i = 1, · · · , L− 1, that achieve the desired output. More precisely,
for r > 0,∃ū ∈ U and x̄i ≥ 0 such that FL(ū) = r and x̄i = Fi(ū), where U is the set of feasible inputs.

Remark 1. The set of feasible inputs depends on the type of actuation. For instance if the actuation is carried out
via non-saturating production only, then U = R+; whereas if it is carried out via non-saturating degradation only, then
U = R−. If both non-saturating production and degradation actuations are allowed then, U = R.

Remark 2. We emphasize that this assumption does not depend on the type of controller used. Instead, it only
depends on the process and the particular choice of actuated input species and actuation mechanism. This assumption
has to be satisfied, otherwise, the actuation is simply inadequate and there is no controller that can achieve the desired
output without changing the choice of the actuated input species and/or actuation mechanism.

The set of formulas in Equation (S8) provides a way to calculate the block diagram parameters (see Fig. 3(b))
from the biomolecular parameters. To go in the opposite direction, one can solve Equation (S8) for the biomolecular
parameters to obtain 

η =
1

µ

(KI − ω0KF )(ω0KP −KI)

(KP −KF )2
;

σ1 = ω0KF ; σ2 = ω0KP ; σL = K ′
P ;

h(z̄1, z̄2, x̄L; x̄1) = ū,

(S10)

where z̄1 = µ KP−KF

KI−ω0KF
, z̄2 = µ KP−KF

ω0KP−KI
and ū is fixed (it depends on the process and setpoint only). Of course whether

this inversion is doable or not depends on the number of degrees of freedom that shape the actuation function h.
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Our goal is to derive the mappings between the Filtered PI parameters (KP ,KI , ω0) and the various biomolecular
parameters (η, ...). We first start with the analysis problem: given the biomolecular parameters, what are the PI gains
and cutoff frequency? Then we move to the design problem: what are the biomolecular parameters that achieve some
desired PI gains and cutoff frequency? We treat the analysis and design problems for the rAIF controller and the sAIF
controller with two biologically-relevant functional forms of h implementing the two negative actuation mechanisms
(production and removal) shown in Fig. 2(b).

S2.1 Mappings for rAIF Controllers

For rAIF with h(z1, z2, xL;x1) = kz1, we have KP = K ′
P = 0 and for a fixed µ and θ, the mappings back and forth

between the block diagram and biomolecular parameters are given by
Analysis: KI =

kz̄1
z̄1 + z̄2

, ω0 = η(z̄1 + z̄2)

Design: η =
ω0KI

ū
, k± =

ū

µ

ω0

2

[
1∓

√
1− 4

µ

ū

KI

ω0

]
,

(S11)

Observe that KF is left out on purpose because with this actuation function KF is not a degree of freedom (unless µ
or θ are allowed to be tuned). Furthermore, since k has to be a nonnegative real number, then the following condition
constrains the coverage of the integral gain and cutoff frequency:

KI ≤ ū

4µ
ω0. (S12)

S2.2 Mappings for sAIF Controllers

For sAIF, we have KF = K ′
P = 0 since h is not a function of z1; instead it is a monotonically decreasing function of

z2. We consider actuations via repression and degradation separately.

Actuation via Repression

The actuation function h is given here as a Hill-type function with cooperativity, that is

u = h(z2;x1) =
α

1 + (z2/κ)n
, (S13)

where κ is the dissociation constant, α is the maximal production rate and n is the Hill coefficient. The setpoint is
given by x̄L = r ≜ µ/θ. For a given process and setpoint r, satisfying Assumption 1, the supporting input ū satisfies
FL(ū) = r and is fixed. We first treat the analysis problem, then move on to the design problem.

Analysis. The controller coordinates (z̄1, z̄2) of the fixed point are given by

z̄1 =
µ

ηκ n
√

α
ū − 1

, z̄2 = κ n

√
α

ū
− 1. (S14)

Clearly, the following condition on the biomolecular parameters has to be satisified to guarantee that z̄1, z̄2 > 0,

α > ū. (S15)

Violating this condition causes both coordinates of the fixed point to become either negative or complex and thus
causing instability. By substituting the partial derivatives of the actuation function σ1 = σL = σx = 0 in Equation (S8),
one can write the PI gains (KP ,KI) and cutoff frequency ω0 in terms of the various biochemical parameters as

KI =
σ2z̄2
z̄1 + z̄2

, KP =
σ2

η(z̄1 + z̄2)
, ω0 = η(z̄1 + z̄2). (S16)

where σ2 = n ū2

ακ

(
z̄2
κ

)n−1
.

Design. By fixing µ and r (and thus ū), one can easily solve the equations given in Equation (S14) and Equation (S16)
for the biomolecular parameters α, κ, and η in terms of the PI gains and cutoff frequency to obtain

η =
1

µ

KI

KP

(
ω0 −

KI

KP

)
, α =

ū

1− µ
nū

ω0KP

ω0−
KI
KP

, κ =
µ

ω0 − KI

KP

n

√
n
ū

µ

ω0 − KI

KP

ω0KP
− 1. (S17)

5



Filtered-PI Coverage. Constraining α, κ and η to be non-negative and to satisfy condition Equation (S15) yields
the following achievable PI gains and cutoff frequency.

Sn
r =

{
(KP ,KI , ω0) ∈ R3

+ : KP < n ū
µ , KI < ω0KP

(
1− µKP

nū

)}
. (S18)

This indicates that employing repression for negative actuation imposes an upper bound on both the proportional
gain KP and integral gain KI . It is worth noting that these upper bounds can be relaxed by increasing n since
Sn
r ⊂ Sn+1

r , suggesting that cooperativity enhances the coverage, thereby enabling more flexible tuning of the filtered
PI parameters. Lastly, it is important to highlight that the upper bound of KI depends not only on the process and
the setpoint via the supporting input ū, but also on the proportional gain KP and cutoff frequency ω0.

Actuation via Degradation

Next, consider the case where Z2 degrades the input species X1. The actuation function h is thus given by

u = h(z2;x1) = α− γz̄2ξ(x1), (S19)

where ξ(x1) =
x̄1

x̄1+κx
. The controller coordinates (z̄1, z̄2) of the fixed point are

z̄1 =
µγξ(x̄1)

η(α− ū)
, z̄2 =

α− ū

γξ(x̄1)
, (S20)

with ξ(x̄1) ≜
x̄1

x̄1+κx
≈ 1, by choosing κx to be small for simplicity. Note that this assumption can be easily relaxed.

Calculations of the analysis problem are similar to the repression case but with σ2 = γξ(x̄1) ≈ γ. The mappings from
the PI gains (KP ,KI) and the cutoff frequency ω0 to the biomolecular parameters are given by

η =
1

µ

KI

KP

(
ω0 −

KI

KP

)
, α ≈ ū+ µ

ω0KP

ω0 − KI

KP

, γ ≈ ω0KP . (S21)

Constraining the biomolecular parameters to be non-negative yields the following achievable PI parameters,

Sd =
{
(KP ,KI , ωc) ∈ R3

+ : KI < ω0KP

}
. (S22)

This indicates that employing degradation for negative actuation, imposes an upper bound on the integral gain KI

only. Furthermore, this bound is less restrictive than that corresponding to the actuation via repression. In fact,
observe that for all n = 1, 2, · · · , we have Sn

r ⊂ Sn+1
r ⊂ Sd as visually demonstrated in SI Fig. S2. Also note that Sn

r

converges to Sd as n→ ∞.

S3 Root-locus Analysis

To carry out a standard root-locus analysis, the closed-loop transfer function should be rewritten in the following form

H(s) =
T (s)

1 +KG(s)
, (S23)

where K is the constant gain of interest (e.g. KI or KP ), such that KG(s) ≜ K N(s)
D(s) represents the loop gain, and

T (s) ≜ M(s)
D(s) is a rational function of s which does not play a role in the closed-loop root-locus. For the rAIF topology

in Fig. 3(a) which realizes a filtered (I + FF) controller, Equation (9) can be rewritten in the form of Equation (S23)
as

K = KI , G(s) =
KSω0

s(s+ ω0)(s+ γ1)
. (S24)

The root-locus starts (at KI = 0) from the poles (0,−ω0,−γ1) of G(s) and ends (at KI → ∞) at its zeros (s → ∞
because N(s) = KSω0 is a constant). As KI is increased from zero, the first root-locus branch starting from the most
negative open-loop pole, −max(γ1, ω0), moves on the real axis toward −∞. The other two branches move toward each
other and break away from the real axis and approach two asymptotes intersecting with the real axis at −(γ1 +ω0)/3
with angles π/3 and −π/3. The break-away point of the root-locus branch starting from s = −min(γ1, ω0) and s = 0
is at

sb =

√
ω2
0 + γ21 − ω0γ1 − (ω0 + γ1)

3
, (S25)

and so it is easy to show that −γ1

2 < sb ≤ 0. In fact, the fastest response which can be achieved by an infinite cutoff
frequency ω0 is limited by a threshold dictated by γ1

2 . These results are summarized in Fig. 4 (a) of the main text.
More details are also reported in SI Fig. S3(a).
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S4 Pole Placement

In this section, we derive the bounds on the achievable poles for the two negative actuation scenarios of sAIF: repression
and degradation. Placing the three poles at a single location s = −a, allows us to express (KP ,KI , ω0) in terms of
the birth-death parameter γ1, the sensing gain KS , and the placed pole −a as shown in Equation (11). Note that the
supporting input ū is calculated using the equation ū− γ1r = 0, where r ≜ µ/θ represents the setpoint.

S4.1 Repression

Plugging (KP ,KI , ω0) in the coverage condition in Equation (S18) yields
0 <

3a2 − γ1(3a− γ1)

KS(3a− γ1)
<
nγ1
KS

a3nγ1
(n+ 1)γ1(3a− γ1)− 3a2

< 3a2 − γ1(3a− γ1).

(S26)

From the first inequality, we get

n+ 1−
√

(n+ 1)(n− 1
3 )

2
< a <

n+ 1 +
√
(n+ 1)(n− 1

3 )

2
, (S27)

and from the second, we get ζ1 < a < ζ2 where ζ1, ζ2 are the two positive roots of the following fourth-order polynomial
equation given by

9ζ4 − (8n+ 18)ζ3 + (12n+ 15)ζ2 − (6n+ 61)ζ + (n+ 1) = 0. (S28)

Calculating the intersection of the two inequalities yields the bounds for the achievable poles sl(n)γ1 < a < su(n)γ1
where 

sl(n) = max

n+ 1−
√
(n+ 1)(n− 1

3 )

2
, ζ1


su(n) = min

n+ 1 +
√

(n+ 1)(n− 1
3 )

2
, ζ2

 .

(S29)

In the case of repression without cooperativity, it is not possible to place the three poles at a single location. However,
we can still study the dynamics by placing the poles at two different locations instead of one. To this end, assume
two poles are placed at s = −a1 and one pole at s = −a2. Equating the closed-loop characteristic polynomial in this
case (s + a1)

2(s + a2) to the denominator of HsAIF(s) gives the expression of the PI gains (KP ,KI) and the cutoff
frequency ω0 in terms of the birth-death parameter γ1, the sensing gain KS and the placed pole locations −a1,−a2 as

KP =
a21 + 2a1a2

KS(2a1 + a2 − γ1)
− γ1
KS

,

KI =
a21a2

KS(2a1 + a2 − γ1)
, ω0 = 2a1 + a2 − γ1.

(S30)

Plugging (KP ,KI , ω0) in the coverage condition in Equation (S18) yields
0 <

B2

B1
<(n+ 1)γ1

nγ1a
2
1a2

(n+ 1)γ1B1 −B2
< B2 −B1

(S31)

where B1 = 2a1 + a2 − γ1, B2 = a21 + 2a1a2. Rewriting a1 = b1γ1 and a2 = b2γ2, the inequalities in Equation (S31)
simplify to {

(n+ 1)c1 − C2 > 0

(C2 − C1) [(n+ 1)C1 − C2]− nb21b2 > 0
(S32)

where C1 = 2b1 + b2 − 1, C2 = b21 + 2b1b2. One can rely on graphical tools to calculate the intersection of the two
inequalities as demonstrated in SI Fig. S3(d).

7



S4.2 Degradation

Plugging (KP ,KI , ω0) in the coverage condition in Equation (S22) yields

a3

KS(3a− γ1)
< (3a− γ1)

3a2 − γ1(3a− γ1)

KS(3a− γ1)
, (S33)

which simplifies to a > γ1

2 .

S5 Connections between the Deterministic & Stochastic Settings

This section delves into the connections that tie the sAIF controller to the pure integral controller on one hand, and
the filtered proportional controller on the other. Specifically, we connect their performance with respect to the gains
in the deterministic setting, and noise behavior in the stochastic setting. As a result of this analysis, we draw a
connection between deterministic gains and stochastic noise characteristics.

S5.1 Deterministic Setting

We begin by examining how the gains of the sAIF controller change while tuning the sequestration rate η. As calculated
in Equation (S7) and Equation (S16), the transfer function of the sAIF controller is given by

C : û(s) =

[
KI

s
ê(s)−KP x̂L(s)

]
ω0

s+ ω0
, (S34)

where

KI ≜
σ2z̄2
z̄1 + z̄2

, KP ≜
σ2θ

η(z̄1 + z̄2)
, ω0 ≜ η(z̄1 + z̄2). (S35)

Note the slight change of notation in the controller transfer function: the proportional gain KP here is equal to KPKS

in Equation (S7). This change of notation is necessary to perform a fair comparison with the filtered proportional
controller. Recall that the supporting input ū = h(z̄2) that steers the output to the robust setpoint at steady state
depends solely on the setpoint r and the process (see Assumption 1 and the remarks thereafter). Therefore, as long as
closed-loop stability is maintained, RPA is achieved with x̄L = µ/θ, and the steady state value z̄2 is independent of η.
However, z̄1 changes in accordance with η to guarantee RPA. From Equation (S5), at steady state we have µ = ηz̄1z̄2,
and thus we can express z̄1 = µ

ηz̄2
. To this end, getting rid of z̄1 in the gains of sAIF controller yields

KI =
σ2z̄2
µ

ηz̄2
+ z̄2

, KP =
σ2θ

µ
z̄2

+ ηz̄2
, ω0 =

µ

z̄2
+ ηz̄2. (S36)

Observe that KI and ω0 are monotonically increasing in η, while KP is monotonically decreasing in η. Hence, varying
the sequestration rate η tunes the integral and proportional gains in opposite directions. Next, let us examine the two
extreme values of η: 0 and ∞. Observe that as η → ∞, we have

lim
η→∞

KI = σ2, lim
η→∞

KP = 0, lim
η→∞

ω0 = ∞. (S37)

Therefore, increasing η towards infinity yields a pure integral controller (with no low-pass filter). In contrast, for small
values of η, we have

KI ≈ 0, KP ≈ σ2θ

µ/z̄2
, ω0 ≈ µ/z̄2. (S38)

Observe that Equation (S38) becomes identical to Equation (S4) (with KF = K ′
P = 0) by equating the degradation

rate δ of Z2 in the filtered proportional controller to the cutoff frequency of the sAIF controller, i.e. δ ≜ ω0 = µ/z̄2.
This implies that for small η, the sAIF controller behaves like the filtered proportional controller. In fact, as far as
the sequestration reaction is concerned, the highest proportional gain that can be achieved by the sAIF controller
corresponds to the gain of the filtered proportional controller with δ ≜ µ/z̄2. This indicates that the proportional
gain of the sAIF controller is limited by the filtered proportional component used to assemble the sAIF controller.
This analysis reveals how the sAIF controller connects a pure integral controller with a filtered proportional controller,
where the sequestration rate η dictates the relative contribution of the two components since

KP

KI
=

θ

ηz̄2
, (S39)

where z̄2 is independent of η.
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S5.2 Stochastic Setting

How does this connection established in the deterministic setting translate into the stochastic setting? We explore
this question by analyzing the coefficient of variation (CV) across different controllers for a simple birth-death process.
The CV, defined as the ratio between the standard deviation and the mean, gives us a dimensionless measure of
variability. Given the intractability of the chemical master equation (CME) and the challenges posed by the moment
closure problem, we estimate the CV of the output using the linear noise approximation (LNA).

S5.2.1 Filtered Proportional Controller

In the stochastic setting, a simple birth-death process controlled by the filtered proportional controller of Fig. 2(c)
can be modeled by a stochastic chemical reaction network (SCRN) represented by the following stoichiometry matrix
and propensity function

S =

[
1 −1 0 0
0 0 1 −1

]
, λ(x, z2) =

[
h(z2) γx θx δz2

]T
. (S40)

LNA provides algebraic equations that approximate the stationary mean
(
E
[
X̄
]
,E
[
Z̄2

])
and covariance Σ̄ of the

closed-loop state vector
[
X Z2

]T
given by 

h
(
E
[
Z̄2

])
− γE

[
X̄
]
≈ 0

θE
[
X̄
]
− δE

[
Z̄2

]
≈ 0

AΣ̄ + Σ̄AT +W ≈ 0,

(S41)

where A ≜

[
−γ −σ2
θ −δ

]
,W ≜

[
h
(
E
[
Z̄2

])
+ γE

[
X̄
]

0
0 θE

[
X̄
]
+ δE

[
Z̄2

]] and σ2 ≜ −h′
(
E
[
Z̄2

])
. Using the first two

equations in Equation (S41), we get rid of the terms h
(
E
[
Z̄2

])
and E

[
Z̄2

]
in W to express it in terms of E

[
X̄
]
as

W =

[
2γ 0
0 2θ

]
E
[
X̄
]
. Thus solving the Lyapunov equation in Equation (S41), we obtain Var

[
X̄
]
from Σ̄11. This

allows us to express the CV in terms of the expectation as

CV
[
X̄
]2 ≈ 1

E
[
X̄
] [1 + σ2θ(σ2 − δ)

(γ + δ)(γδ + σ2θ)

]
. (S42)

To connect the CV with the deterministic proportional gain, we recall that KP ≜ σ2θ
ω0

and ω0 ≜ δ, and thus we have

CV
[
X̄
]2 ≈ 1

E
[
X̄
] [1 + KPω0

(
KP

θ − 1
)

(γ + ω0)(γ +KP )

]
. (S43)

Compared to the CV in the open-loop in Equation (13), the filtered proportional controller attenuates noise if

KP < θ or equivalently σ2 < ω0. (S44)

It is important to mention that this result should not be interpreted as ”lower proportional gain reduces noise”. Instead,
it shows that the noise reduction is constrained by the low-pass filter (ω0 and θ). In fact, if we increase ω0 and θ
towards ∞, the filtered proportional controller approaches the unfiltered proportional controller which unconditionally
reduces noise.

S5.2.2 sAIF Controller

Next, we consider the simple birth-death process controlled by the sAIF controller depicted in Fig. 3(a). The closed-
loop can now be modeled as a SCRN represented by the following stoichiometry matrix and propensity function

S =

1 −1 0 0 0
0 0 1 0 −1
0 0 0 1 −1

 , λ(x, z1, z2) =
[
h(z2) γx µ θx ηz1z2

]T
. (S45)
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Once again, LNA provides algebraic equations that approximate the stationary mean
(
E
[
X̄
]
,E
[
Z̄1

]
,E
[
Z̄2

])
and

covariance Σ̄ of the closed-loop state vector
[
X Z1 Z2

]T
given by

h
(
E
[
Z̄2

])
− γE

[
X̄
]
≈ 0

µ− ηE
[
Z̄1

]
E
[
Z̄2

]
≈ 0

θE
[
X̄
]
− ηE

[
Z̄1

]
E
[
Z̄2

]
≈ 0

AΣ̄ + Σ̄AT +W ≈ 0,

(S46)

where A ≜

−γ 0 −σ2
0 −ηE

[
Z̄2

]
−ηE

[
Z̄1

]
θ −ηE

[
Z̄2

]
−ηE

[
Z̄1

]
, W =

h (E[Z̄2

])
+ γE

[
X̄
]

0 0
0 µ+ ηE

[
Z̄1

]
E
[
Z̄2

]
ηE
[
Z̄1

]
E
[
Z̄2

]
0 ηE

[
Z̄1

]
E
[
Z̄2

]
θE
[
X̄
]
+ ηE

[
Z̄1

]
E
[
Z̄2

]


and σ2 ≜ −h′
(
E
[
Z̄2

])
. Using the first three equations in Equation (S46), we get rid of the terms h

(
E
[
Z̄2

])
, µ, and

E
[
Z̄1

]
E
[
Z̄2

]
in W to express it in terms of E

[
X̄
]
as W =

2γ 0 0
0 2θ θ
0 θ 2θ

E
[
X̄
]
. Similarly, we substitute E

[
Z̄1

]
≈

µ/ηE
[
Z̄2

]
and E

[
Z̄2

]
≈ h−1

(
γE
[
X̄
])

in A. Hence, solving the Lyapunov equation in Equation (S46), we obtain

Var
[
X̄
]
from Σ̄11. This allows us to express the CV in terms of the expectation as

CV
[
X̄
]2 ≈ 1

E
[
X̄
] [1 + σ2θ (σ2 − ω0) + ηE

[
Z̄2

]
σ2 (ω0 + γ + θ)

(γ + ω0) (γω0 + σ2θ)− ηE
[
Z̄2

]
σ2θ

]
, (S47)

where
ω0 ≜ η

(
E
[
Z̄1

]
+ E

[
Z̄2

])
=

µ

E
[
Z̄2

] + ηE
[
Z̄2

]
and E

[
Z̄2

]
≈ h−1

(
γE
[
X̄
])
. (S48)

Two observations can now be made regarding Equation (S47) for a given setpoint E
[
X̄
]
= µ/θ. First, computing the

derivative of CV
[
X̄
]2

with respect to η yields

d

dη
CV
[
X̄
]2 ≈

µσ2E
[
Z̄2

]2
E
[
X̄
] η2γE

[
Z̄2

]4
+ 2η(γ2 + θγ + σ2θ)E

[
Z̄2

]3
+ γ(γ2 + θγ + 2ηµ)E

[
Z̄2

]2
+ µ(2γ2 + 2θγ + σ2θ)E

[
Z̄2

]
+ γµ2[

(γ + ω0) (γω0 + σ2θ)− ηE
[
Z̄2

]
σ2θ
]2 .

(S49)

Given that d
dηCV

[
X̄
]2 ≥ 0, it follows that the coefficient of variation for a specified expected value is a monotonically

increasing function of the sequestration rate η. Consequently, the LNA reflects the trend observed in the simulations
depicted in Fig. 5, showing that increasing η leads to a higher noise level in the output.

The second observation pertains to the connection of the sAIF controller with the filtered proportional controller.
Indeed, observe that for small η, from Equation (S47), we have

CV
[
X̄
]2 ≈ 1

E
[
X̄
] [1 + σ2θ (σ2 − ω0)

(γ + ω0) (γω0 + σ2θ)

]
with ω0 =

µ

h−1
(
γE
[
X̄
]) . (S50)

When the degradation rate δ of Z2 in the filtered proportional controller is set equal to the cutoff frequency of the sAIF
controller with small η, namely δ ≜ ω0 = µ/h−1

(
γE
[
X̄
])
, Equation (S50) becomes identical to Equation (S42). This

alignment underscores that in scenarios where η is very small, the sAIF controller mimics the behavior of the filtered
proportional controller with respect to CV, similar to observations in the deterministic framework. Consequently, the
minimum CV achievable by the sAIF controller is constrained by its hidden proportional component - an observation
that is seen in the simulations of Fig. 5.

To explicitly connect the CV with the deterministic framework, we recall from Equation (S36) that
KP =

σ2θ

ω0
=⇒ σ2 =

KPω0

θ

KI =
ηE
[
Z̄2

]
σ2

ω0
=⇒ ηE

[
Z̄2

]
=
θKI

KP
.

(S51)

Substituting for σ2 and ηE
[
Z̄2

]
in Equation (S47) yields

CV
[
X̄
]2 ≈ 1

E
[
X̄
] [1 + KPω0

(
KP

θ − 1
)
+KI (ω0 + γ + θ)

(γ + ω0) (γ +KP )− θKI

]
≥ 1

E
[
X̄
] [1 + KPω0

(
KP

θ − 1
)

(γ + ω0) (γ +KP )

]
, (S52)

where the lower bound is exactly the CV corresponding to the proportional component given in Equation (S43) which
is achieved by setting the integral gain KI to zero.
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S6 Non-Ideal Conditions: Dilution Effects

In this section, we examine the properties of the various controllers while considering the effects of dilution on the
controller species.

S6.1 Steady-State Sensitivities in the Deterministic Setting

Consider the closed-loop configuration shown in Fig. 2(a), which consists of an arbitrary regulated network—referred
to as the process P∆—subject to a constant disturbance ∆. The system’s input and output are denoted by u and
y, respectively, with y potentially representing a species concentration, such as xL, as an example. The feedback
controller, denoted by C, takes the output y as its input and generates the control signal u, which is fed back to the
process. Let x and z be two nonnegative vectors representing the internal states of the regulated network and the
controller, respectively. The deterministic dynamics of the closed-loop system are described by the following set of
nonlinear differential-algebraic equations

Process: y = P∆(u) ⇐⇒

{
ẋ = f∆(x, u),

y = g∆(x, u),

Controller: u = C(y) ⇐⇒

{
ż = ψ(z, y),

u = h(z),

(S53)

where f∆, g∆, ψ, and h are continuously differentiable functions defined on the positive orthant. Observe that here u
is a function of z only.

Definitions. The set of feasible inputs U is defined as the range of h over the positive orthant, i.e.,

U ≜ {ū ≥ 0 : ∃z̄ ≥ 0 with ū = h(z̄)} . (S54)

The set of admissible setpoints of the process P∆ with disturbance ∆ over the set of feasible inputs U is denoted by
R(P∆,U) with

R(P∆,U) ≜ {ȳ ≥ 0 : ∃ū ∈ U, x̄ ≥ 0 with f∆(x̄, ū) = 0 and ȳ = g∆(x̄, ū)} . (S55)

The steady-state input/output maps of the process and the controller are expressed as

Process: ȳ = P̄∆(ū) ⇐⇒

{
0 = f∆(x̄, ū),

ȳ = g∆(x̄, ū),

Controller: ū = C̄(ȳ) ⇐⇒

{
0 = ψ(z̄, ȳ),

ū = h(z̄),

(S56)

where we assume for simplicity that the algebraic equations f∆(x̄, ū) = 0 and ψ∆(z̄, ȳ) = 0 have unique non-negative
solutions x̄ and z̄ for a given ū and ȳ, respectively. Finally, the network P∆ is strictly monotonic if P̄ ′

∆(ū) does not
change sign for all ū ≥ 0, and the closed loop is said to operate in a negative feedback configuration if P∆ and C have
opposite monotonicity or P̄ ′

∆(ū)C̄′(ȳ) ≤ 0.

S6.1.1 Comparison Between Non-Ideal sAIF and Filtered Proportional Controllers

We are now ready to prove Theorem 1 which is repeated here for convenience.

Theorem 1. For any strictly monotonic regulated network under a constant disturbance ∆, operating in negative
feedback with either a non-ideal sAIF or filtered proportional (fP) controller, assume identical dilution rate δ and
strictly monotonic actuation mechanisms hs for both controllers (see Fig. 6(a)). At any desired steady-state output
x̄L = r, the steady-state sensitivity to the disturbance satisfies∣∣∣∣∂x̄L∂∆

∣∣∣∣sAIF

<

∣∣∣∣∂x̄L∂∆

∣∣∣∣fP .
Moreover, if either µ or θ is fixed and the other tuned to maintain x̄L = r, the sensitivity strictly decreases as the
sequestration rate η increases.
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Proof. Consider an arbitrary process P∆ infiltrated by a constant disturbance ∆, and whose input and output are
denoted by u and y, respectively. The dynamics of the closed-loop systems with either the non-ideal sAIF controller
Cs or the filtered proportional controller Cp are given by the following equations:

Process: y = P∆(u) ⇐⇒

{
ẋ = f∆(x, u)

y = g∆(x, u)

Non-Ideal sAIF Controller: u = Cs(y) ⇐⇒


ż1 = µ− ηz1z2 − δz1

ż2 = θsy − ηz1z2 − δz2

u = hs(z2)

fP Controller: u = Cp(y) ⇐⇒

{
ż2 = θpy − δz2

u = hs(z2).

(S57)

Here, f∆, g∆, and hs are continuously differentiable functions, with hs being strictly monotonic. Observe that the
dilution rate δ and the actuation mechanism hs are the same for both controllers.

For a given disturbance ∆ and desired admissible steady-state output ȳ ∈ R(P∆,U), there exists a ū ∈ U such
that ȳ = P̄∆(ū). Furthermore, since ū ∈ U, there exists a z̄2 ≥ 0 such that hs(z̄2) = ū. Therefore, we have

ȳ = P̄∆ ◦ hs(z̄2) =⇒ z̄2 = h−1
s ◦ P̄−1

∆ (ȳ) ≜ F (ȳ,∆), (S58)

where the inverses exist due to the strict monotonicity assumptions. These expressions are valid for both controllers.
Next, we write a single nonlinear algebraic equation for ȳ for both controllers. The following calculations encapsulate
both cases with (θ, η) = (θs,positive) for the sAIF controller, while (θ, η) = (θp, 0) for the fP controller. Dropping the
bar for convenience, we have{

µ− ηz1z2 − δz1 = 0

θy − ηz1z2 − δz2 = 0
=⇒ ηδz22 +

[
η(µ− θy) + δ2

]
z2 − δθy = 0 with z2 = F (y,∆). (S59)

The sensitivity of the steady-state output with respect to disturbances can be implicitly calculated as follows

2ηδz2
∂z2
∂∆

− ηθ
∂y

∂∆
z2 +

[
η(µ− θy) + δ2

] ∂z2
∂∆

− δθ
∂y

∂∆
= 0 with


z2 = F (y,∆)

∂z2
∂∆

=
∂F (y,∆)

∂y

∂y

∂∆
+
∂F (y,∆)

∂∆
.

(S60)

We proceed with some algebraic manipulations to obtain an expression for ∂y
∂∆[

2ηδz2 + δ2 + η(µ− θy)
] ∂z2
∂∆

− θ (ηz2 + δ)
∂y

∂∆
= 0

[δ(ηz2 + δ) + η(µ− θy + δz2)]
∂z2
∂∆

− θ (ηz2 + δ)
∂y

∂∆
= 0

[δ(ηz2 + δ) + ηδz1]
∂z2
∂∆

− θ (ηz2 + δ)
∂y

∂∆
= 0[

δ(ηz2 + δ) + η
µδ

ηz2 + δ

]
∂z2
∂∆

− θ (ηz2 + δ)
∂y

∂∆
= 0

δ

[
1 +

ηµ

(ηz2 + δ)2

]
∂z2
∂∆

− θ
∂y

∂∆
= 0

δ

[
1 +

ηµ

(ηz2 + δ)2

] [
∂F (y,∆)

∂y

∂y

∂∆
+
∂F (y,∆)

∂∆

]
− θ

∂y

∂∆
= 0[

δ

(
1 +

ηµ

(ηz2 + δ)2

)
∂F (y,∆)

∂y
− θ

]
∂y

∂∆
= −δ

(
1 +

ηµ

(ηz2 + δ)2

)
∂F (y,∆)

∂∆

=⇒ ∂y

∂∆
= −

∂F (y,∆)
∂∆

∂F (y,∆)
∂y − θ

δ
1

1+ ηµ

(ηz2+δ)2

.

(S61)

Note that
∂F (y,∆)

∂y
=

1

h′s
(
h−1
s ◦ P̄−1

∆ (y)
)
P̄ ′
∆

(
P̄−1
∆ (y)

) < 0, (S62)
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since we have a negative feedback configuration. Therefore, we have∣∣∣∣ ∂ȳ∂∆
∣∣∣∣ =

∣∣∣∂F (ȳ,∆)
∂∆

∣∣∣∣∣∣∂F (ȳ,∆)
∂ȳ

∣∣∣+ θ
δ

1
1+ ηµ

(ηF (ȳ,∆)+δ)2

. (S63)

To fix the setpoint ȳ = r at some disturbance ∆0, the parameters µ, θ and η should satisfy

ηδz̄22 +
[
η(µ− θȳ) + δ2

]
z̄2 − δθȳ = 0 =⇒ θ =

F (r,∆0)

r

[
δ +

ηµ

ηF (r,∆0) + δ

]
. (S64)

Therefore the sensitivity becomes∣∣∣∣ ∂ȳ∂∆
∣∣∣∣
(ȳ,∆)=(r,∆0)

=

∣∣∣∂F (r,∆0)
∂∆

∣∣∣∣∣∣∂F (r,∆0)
∂ȳ

∣∣∣+ F (r,∆0)
r

1+ 1
δ

ηµ
ηF (r,∆0)+δ

1+ ηµ

(ηF (r,∆0)+δ)2

. (S65)

As such, for the cases of the non-ideal sAIF and filtered proportional controllers, we obtain:

non-ideal sAIF:

∣∣∣∣ ∂ȳ∂∆
∣∣∣∣
(ȳ,∆)=(r,∆0)

=

∣∣∣∂F (r,∆0)
∂∆

∣∣∣∣∣∣∂F (r,∆0)
∂ȳ

∣∣∣+ ϕs
with ϕs ≜

F (r,∆0)

r

1 + 1
δ

ηµ
ηF (r,∆0)+δ

1 + ηµ
(ηF (r,∆0)+δ)2

fP:

∣∣∣∣ ∂ȳ∂∆
∣∣∣∣
(ȳ,∆)=(r,∆0)

=

∣∣∣∂F (r,∆0)
∂∆

∣∣∣∣∣∣∂F (r,∆0)
∂ȳ

∣∣∣+ ϕp
with ϕp ≜

F (r,∆0)

r
.

(S66)

Observe that

ϕs − ϕp =
F (r,∆0)

r

[
1 + 1

δ
ηµ

ηF (r,∆0)+δ

1 + ηµ
(ηF (r,∆0)+δ)2

− 1

]
=
ηF 2(r,∆0)

rδ

ηµ
(ηF (r,∆0)+δ)2

1 + ηµ
(ηF (r,∆0)+δ)2

> 0, (S67)

and therefore the sensitivity in the case of the non-ideal sAIF controller is lower than that in the case of the filtered
proportional controller.

Next, we analyze the monotonicity of
∣∣∣ ∂ȳ∂∆

∣∣∣ with respect to η. We consider two scenarios.

Scenario 1. Fix θ, δ, the steady-state output level ȳ = r and the disturbance level ∆ = ∆0. Then as η is adjusted,
µ should be tuned to maintain the steady-state output level at ȳ = r according to the following equation

ηδz̄22 +
[
η(µ− θȳ) + δ2

]
z̄2 − δθȳ = 0 =⇒ µ =

1

ηF (r,∆0)

(
ηF (r,∆0) + δ

)(
θr − δF (r,∆0)

)
. (S68)

Note that θȳ − δz̄2 = ηz̄1z̄2 ≥ 0, and thus θr − δF (r,∆0) ≥ 0 for any admissible fixed point. In this scenario, we
substitute for µ in Equation (S63) to yield the sensitivity given by∣∣∣∣ ∂ȳ∂∆

∣∣∣∣
(ȳ,∆)=(r,∆0)

=

∣∣∣∂F (r,∆0)
∂∆

∣∣∣∣∣∣∂F (r,∆0)
∂ȳ

∣∣∣+ θ
δ

1

1+ 1
F (r,∆0)

θr−δF (r,∆0)

ηF (r,∆0)+δ

. (S69)

Clearly, in this scenario the sensitivity is a decreasing function in η.
Scenario 2. Fix µ, δ, the steady-state output level ȳ = r and the disturbance level ∆ = ∆0. Then as η is adjusted,

θ should be tuned to maintain the steady-state output level at ȳ = r according to the following equation

ηδz̄22 +
[
η(µ− θȳ) + δ2

]
z̄2 − δθȳ = 0 =⇒ θ =

F (r,∆0)

r

[
δ +

ηµ

ηF (r,∆0) + δ

]
. (S70)

In this scenario, we substitute for θ in Equation (S63) to yield the sensitivity given by∣∣∣∣ ∂ȳ∂∆
∣∣∣∣
(ȳ,∆)=(r,∆0)

=

∣∣∣∂F (r,∆0)
∂∆

∣∣∣∣∣∣∂F (r,∆0)
∂ȳ

∣∣∣+ F (r,∆0)
r

1+ 1
δ

ηµ
ηF (r,∆0)+δ

1+ ηµ

(ηF (r,∆0)+δ)2

. (S71)

Note that

ϕ(η) ≜
1 + 1

δ
ηµ

ηF (r,∆0)+δ

1 + ηµ
(ηF (r,∆0)+δ)2

=⇒ ϕ′(η) =
ηµF (r,∆0)

δ

ηµ+ 2δ [ηF (r,∆0) + δ]

[ηµ+ (ηF (r,∆0) + δ)2]
2 ≥ 0. (S72)

Therefore, in this scenario the sensitivity is also a decreasing function in η.
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A numerical demonstration of this result is presented in Fig. S6, highlighting the steady-state errors caused by
a disturbance and comparing the performance of the non-ideal sAIF controller with that of the filtered proportional
controller.

S6.1.2 Comparison between Non-Ideal sAIF and rAIF Controllers

We are now ready to prove Theorem 2 which is repeated here for convenience.

Theorem 2. For any strictly monotonic regulated network under a constant disturbance ∆, operating in negative
feedback with either a non-ideal sAIF or rAIF controller, assume identical controller parameters µ, θ, η, and δ for both
controllers (see Fig. 6(a)). At any fixed desired steady-state output x̄L, the steady-state sensitivities to the disturbance
satisfy: 

∣∣∣∣∂x̄L∂∆

∣∣∣∣sAIF

<

∣∣∣∣∂x̄L∂∆

∣∣∣∣rAIF

if x̄L >
µ

θ
− δ2

ηθ
,∣∣∣∣∂x̄L∂∆

∣∣∣∣sAIF

>

∣∣∣∣∂x̄L∂∆

∣∣∣∣rAIF

if x̄L <
µ

θ
− δ2

ηθ
,

assuming the absolute value of the actuation gains of both controllers are matched (see Fig. 6(c)).

Proof. Consider an arbitrary process P∆ infiltrated by a constant disturbance ∆, and whose input and output are
denoted by u and y, respectively. The dynamics of the closed-loop systems with either the non-ideal sAIF controller
Cs or rAIF controllers Cr are given by the following equations:

Process: y = P∆(u) ⇐⇒

{
ẋ = f∆(x, u)

y = g∆(x, u)

Non-Ideal sAIF Controller: u = Cs(y) ⇐⇒


żs1 = µ− ηzs1z

s
2 − δzs1

żs2 = θy − ηzs1z
s
2 − δzs2

u = hs(z
s
2)

Non-Ideal rAIF Controller: u = Cr(y) ⇐⇒


żr1 = µ− ηzr1z

r
2 − δzr1

żr2 = θy − ηzr1z
r
2 − δzr2

u = hr(z
r
1).

(S73)

Here, f∆, g∆, hs and hr are continuously differentiable functions, with hs and hr being strictly monotonic. Observe
that all controller parameters µ, θ, η and δ are kept the same for both controllers.

Let Us and Ur be the sets of feasible inputs associated with hs and hr, respectively. For a given disturbance ∆
and desired steady-state output ȳ that is admissible for both controllers, i.e. ȳ ∈ R(P∆,Us)∩R(P∆,Ur), there exists
a ū ∈ Us ∩Ur such that ȳ = P̄∆(ū). Furthermore, since ū ∈ Us ∩Ur, there exists a z̄s2 ≥ 0 such that hs(z̄

s
2) = ū and a

z̄r1 ≥ 0 such that hr(z̄
r
1) = ū. Therefore, we have

ū = hs(z̄
s
2) = hr(z̄

r
1) = P̄−1

∆ (ȳ), (S74)

where the inverse exists due to the strict monotonicity assumption. Furthermore, at steady state, the following
equations are satisfied {

µ− ηz̄s1 z̄
s
2 − δz̄s1 = 0

θȳ − ηz̄s1 z̄
s
2 − δz̄s2 = 0

and

{
µ− ηz̄r1 z̄

r
2 − δz̄r1 = 0

θȳ − ηz̄r1 z̄
r
2 − δz̄r2 = 0.

(S75)

Then we have

z̄r1 = z̄s1 =
1

2

µ− θȳ

δ
− δ

η
+

√(
µ− θȳ

δ
− δ

η

)2

+
4µ

η

 ≜ z̄1

z̄r2 = z̄s2 =
1

2

θȳ − µ

δ
− δ

η
+

√(
θȳ − µ

δ
− δ

η

)2

+
4θȳ

η

 ≜ z̄2.

(S76)

Therefore, having the same setpoint and actuation gains for both controllers are translated to the following equations{
z̄s1 = z̄r1 ≜ z̄1

z̄s2 = z̄r2 ≜ z̄2,

{
z̄1 = h−1

r ◦ P̄−1
∆ (ȳ) ≜ Fr(ȳ,∆)

z̄2 = h−1
s ◦ P̄−1

∆ (ȳ) ≜ Fs(ȳ,∆),
and |h′r(z̄1)| = |h′s(z̄2)| = G. (S77)
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Next, we calculate the steady-state sensitivities of the output with respect to the disturbance for both controllers. For
the rAIF controller we proceed by dropping the bar for convenience. We have{

µ− ηz1z2 − δz1 = 0

θy − ηz1z2 − δz2 = 0
=⇒ ηδz21 −

[
η(µ− θy)− δ2

]
z1 − δµ = 0 with z1 = Fr(y,∆). (S78)

The sensitivity of the steady-state output with respect to disturbances can be implicitly calculated as follows

2ηδz1
∂z1
∂∆

+ ηθ
∂y

∂∆
z1 −

[
η(µ− θy)− δ2

] ∂z1
∂∆

= 0 with


z1 = Fr(y,∆)

∂z1
∂∆

=
∂Fr(y,∆)

∂y

∂y

∂∆
+
∂Fr(y,∆)

∂∆
.

(S79)

We proceed with some algebraic manipulations to obtain an expression for ∂y
∂∆[

2ηδz1 + δ2 − η(µ− θy)
] ∂z1
∂∆

+ ηθz1
∂y

∂∆
= 0

[δ(ηz1 + δ)− η(µ− θy − δz1)]
∂z1
∂∆

+ ηθz1
∂y

∂∆
= 0

[δ(ηz1 + δ) + ηδz2]
∂z1
∂∆

+ ηθz1
∂y

∂∆
= 0[

δ(ηz1 + δ) + η
δθy

ηz1 + δ

]
∂z1
∂∆

+ ηθz1
∂y

∂∆
= 0

δ

[
1 +

ηθy

(ηz1 + δ)2

]
∂z1
∂∆

+
ηθz1
ηz1 + δ

∂y

∂∆
= 0

δ

[
1 +

ηθy

(ηz1 + δ)2

] [
∂Fr(y,∆)

∂y

∂y

∂∆
+
∂Fr(y,∆)

∂∆

]
+

ηθz1
ηz1 + δ

∂y

∂∆
= 0[

δ

(
1 +

ηθy

(ηz1 + δ)2

)
∂Fr(y,∆)

∂y
+

ηθz1
ηz1 + δ

]
∂y

∂∆
= −δ

(
1 +

ηθy

(ηz1 + δ)2

)
∂Fr(y,∆)

∂∆

=⇒ ∂y

∂∆
= −

∂Fr(y,∆)
∂∆

∂Fr(y,∆)
∂y + θ

δ
ηz1(ηz1+δ)

(ηz1+δ)2+ηθy

.

(S80)

Note that
∂Fr(y,∆)

∂y
=

1

h′r
(
h−1
r ◦ P̄−1

∆ (y)
)
P̄ ′
∆

(
P̄−1
∆ (y)

) > 0, (S81)

since we have a negative feedback configuration. Therefore, we have

∣∣∣∣ ∂ȳ∂∆
∣∣∣∣ =

∣∣∣∂Fr(y,∆)
∂∆

∣∣∣∣∣∣∂Fr(y,∆)
∂y

∣∣∣+ θ
δ

ηz1(ηz1+δ)
(ηz1+δ)2+ηθy

. (S82)

The calculations for the sAIF controller was already carried out in the proof of Theorem 1, and so the results are
summarized in the following equations

sAIF:

∣∣∣∣ ∂ȳ∂∆
∣∣∣∣
(ȳ,∆)=(r,∆0)

=

∣∣∣∂Fs(r,∆0)
∂∆

∣∣∣∣∣∣∂Fs(r,∆0)
∂ȳ

∣∣∣+ ϕs
with ϕs ≜

θ

δ

1

1 + ηµ
(ηz̄2+δ)2

rAIF:

∣∣∣∣ ∂ȳ∂∆
∣∣∣∣
(ȳ,∆)=(r,∆0)

=

∣∣∣∂Fr(r,∆0)
∂∆

∣∣∣∣∣∣∂Fr(r,∆0)
∂ȳ

∣∣∣+ ϕr
with ϕr ≜

θ

δ

ηz̄1(ηz̄1 + δ)

(ηz̄1 + δ)2 + ηθȳ
.

(S83)
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First, observe that ∣∣∣∣∂Fr(r,∆)

∂y

∣∣∣∣ =
∣∣∣∣∣ 1

h′r
(
h−1
r ◦ P̄−1

∆ (r)
)
P̄ ′
∆

(
P̄−1
∆ (r)

) ∣∣∣∣∣
=

∣∣∣∣∣ 1

h′r(z̄1)P̄ ′
∆

(
P̄−1
∆ (r)

) ∣∣∣∣∣
=

∣∣∣∣∣ 1

h′s(z̄2)P̄ ′
∆

(
P̄−1
∆ (r)

) ∣∣∣∣∣
=

∣∣∣∣∣ 1

h′s
(
h−1
s ◦ P̄−1

∆ (r)
)
P̄ ′
∆

(
P̄−1
∆ (r)

) ∣∣∣∣∣ =
∣∣∣∣∂Fs(r,∆0)

∂y

∣∣∣∣ ,

(S84)

and similarly ∣∣∣∣∂Fr(r,∆0)

∂∆

∣∣∣∣ = ∣∣∣∣∂Fs(r,∆0)

∂∆

∣∣∣∣ . (S85)

Hence, we are left with comparing ϕs and ϕr. We have

ϕr − ϕs =
θ

δ

[
ηz̄1(ηz̄1 + δ)

(ηz̄1 + δ)2 + ηθȳ
− 1

1 + ηµ
(ηz̄2+δ)2

]

=
θ

δ

[
ηz̄1

ηz̄1 + δ + ηθȳ
ηz̄1+δ

− ηz̄2 + δ

ηz̄2 + δ + ηµ
ηz̄2+δ

]
.

(S86)

But recall that z̄1 = µ
ηz̄1+δ and z̄2 = θȳ

ηz̄1+δ . Then

ϕr − ϕs =
θ

δ

[
ηz̄1

ηz̄1 + δ + ηz̄2
− ηz̄2 + δ

ηz̄1 + δ + ηz̄1

]
=
θ

δ

η(z̄1 − z̄2)− δ

η(z̄1 + z̄2) + δ

=
θ

δ

η µ−θȳ
δ − δ

η(z̄1 + z̄2) + δ

=
θ

δ2
η(µ− θȳ)− δ2

η(z̄1 + z̄2) + δ
.

(S87)

Hence, ϕr > ϕs iff ȳ < µ
θ − δ2

ηθ . Therefore,∣∣∣∣ ∂ȳ∂∆
∣∣∣∣rAIF

(ȳ,∆)=(r,∆0)

<

∣∣∣∣ ∂ȳ∂∆
∣∣∣∣sAIF

(ȳ,∆)=(r,∆0)

⇐⇒ ȳ <
µ

θ
− δ2

ηθ
. (S88)

S6.2 Noise Analysis for the Non-Ideal sAIF Controller Using Linear Noise Approxi-
mation

Consider the simple birth-death process controlled by the non-ideal sAIF controller depicted in Fig. 6(a). The closed-
loop can now be modeled as a SCRN represented by the following stoichiometry matrix and propensity function

S =

1 −1 0 0 0 0 0
0 0 1 0 −1 −1 0
0 0 0 1 −1 0 −1

 , λ(x, z1, z2) =
[
h(z2) γx µ θx ηz1z2 δz1 δz2

]T
. (S89)

The goal here is to derive the sensitivity of the stationary coefficient of variation of the output CV
[
X̄
]
to the seques-

tration rate η for a fixed setpoint E
[
X̄
]
= r. LNA provides algebraic equations that approximate the stationary mean(

E
[
X̄
]
,E
[
Z̄1

]
,E
[
Z̄2

])
and covariance Σ̄ of the closed-loop state vector

[
X Z1 Z2

]T
given by

h
(
E
[
Z̄2

])
− γE

[
X̄
]
≈ 0

µ− ηE
[
Z̄1

]
E
[
Z̄2

]
− δE

[
Z̄1

]
≈ 0

θE
[
X̄
]
− ηE

[
Z̄1

]
E
[
Z̄2

]
− δE

[
Z̄2

]
≈ 0

AΣ̄ + Σ̄AT +W ≈ 0,

(S90)
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where A ≜

−γ 0 −σ2
0 −ηE

[
Z̄2

]
− δ −ηE

[
Z̄1

]
θ −ηE

[
Z̄2

]
−ηE

[
Z̄1

]
− δ

,
W =

h (E[Z̄2

])
+ γE

[
X̄
]

0 0
0 µ+ ηE

[
Z̄1

]
E
[
Z̄2

]
+ δE

[
Z̄1

]
ηE
[
Z̄1

]
E
[
Z̄2

]
0 ηE

[
Z̄1

]
E
[
Z̄2

]
θE
[
X̄
]
+ ηE

[
Z̄1

]
E
[
Z̄2

]
+ δE

[
Z̄2

]
 and σ2 ≜ −h′

(
E
[
Z̄2

])
.

Using the first three equations in Equation (S90) and fixing the stationary output to E
[
X̄
]
= r, we can write

h
(
E
[
Z̄2

])
= γE

[
X̄
]

E
[
Z̄1

]
=

µ

ηE
[
Z̄2

]
+ δ

and θ =
E
[
Z̄2

]
r

(
δ +

ηµ

ηE
[
Z̄2

]
+ δ

)
.

Note that the last equation provides a tuning scheme for θ that yields, up to an LNA approximation, a fixed stationary
output E

[
X̄
]
= r as η is varied. Hence we can get rid of h

(
E
[
Z̄2

])
, θ, and E

[
Z̄1

]
in A and W to express them in terms

of r and E
[
Z̄2

]
as

A =


−γ 0 −σ2
0 −ηE

[
Z̄2

]
− δ − η µ

ηE[Z̄2]+δ

E[Z̄2]
r

(
δ + ηµ

ηE[Z̄2]+δ

)
−ηE

[
Z̄2

]
− η µ

ηE[Z̄2]+δ
− δ



W =


2 γ r 0 0

0 2µ
η µE[Z̄2]
ηE[Z̄2]+δ

0
η µE[Z̄2]
ηE[Z̄2]+δ

2E
[
Z̄2

](
ηµ

ηE[Z̄2]+δ
+ δ

)
 .

Note that, up to an LNA approximation, E
[
Z̄2

]
is independent of η when the stationary output is fixed E

[
X̄
]
= r.

Using the expressions for A and W , the system of linear equations AΣ̄ + Σ̄AT +W = 0 can be solved for Σ̄. Due to
the complexity of the calculations, Matlab’s symbolic toolbox is employed to compute Σ̄, specifically its first entry,
which represents the stationary variance of the output, Var

[
X̄
]
. The MATLAB code can be found at the following

Github repository https://github.com/Maurice-Filo/Sensor-Based-Biomolecular-Integral-Controllers. While the full
expression for Σ̄ is complicated and not presented here, the derivative of the variance with respect to η at η = 0 is
given by:

∂Var[X̄]

∂η

∣∣∣∣
η = 0,E[X̄] = r

= −
E[Z̄2]µ r

∣∣h′(E[Z̄2])
∣∣ (γ +

∣∣h′(E[Z̄2])
∣∣)

δ (δ + γ)2
(
E[Z̄2]

∣∣h′(E[Z̄2])
∣∣+ γ r

) < 0. (S91)

This indicates that as η increases from zero (the filtered P controller case) while maintaining a fixed output level,
the variance—and consequently the coefficient of variation (CV)—must decrease. This analytical approximation
complements the numerical findings in Fig. 6(e), which show a decrease in CV as η increases from zero.

17



X

Z1

Z2

X

Z1

Z2 Z2

X

Z1

X

Z1

Z2

X
Z1

Z2

Production Removal Mixed Production/Removal
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Figure S1: Actuation with multiple species. This extends Fig. 2(b) to the case where two controller species Z1 and Z2 actuate X
positively and negatively, respectively. The implementations can once again be via production and/or removal reactions. Furthermore, two
particular classes of functional forms are shown here, where the effects of Z1 and Z2 enter additively (such as separate promoters for the
same gene) or multiplicatively (such as competition over the same promoter).

Figure S2: Filtered-PI Coverage. The colored regions
depict the achievable PI gains (KP ,KI) and cutoff fre-
quency ω0 by adjusting the corresponding biomolecu-
lar parameters. These regions are color-coded to repre-
sent different actuation functions h, modeling three dis-
tinct negative actuation mechanisms: repression Equa-
tion (S13) with and without cooperativity in green
(n = 1) and blue (n = 2), respectively, and degrada-
tion Equation (S19) in red. Note that ū represents the
steady-state supporting input necessary to achieve the
desired setpoint, and its value depends solely on the
plant and the desired setpoint. The span of achiev-
able filtered-PI parameters for repression and degra-
dation actuations are respectively calculated as Sn

r in
Equation (S18) and Sd in Equation (S22), and they are
shown to satisfy Sn

r ⊂ Sn+1
r ⊂ Sd. This demonstrates

that degradation provides greater tuning flexibility than
repression actuation. It also demonstrates that coopera-
tivity helps in expanding the achievable gains and cutoff
frequency.
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Figure S3: Dynamic Performance Assessment. A birth-death process (see Fig. 5(a), left) is controlled, as a case study, by rAIF and
sAIF. The control action is denoted by u and the degradation rate of the process is denoted by γ1. (a) Performance limitation of rAIF.
Positive actuation by Z1 (i.e. u = kz1) yields a response that cannot be sped up beyond a certain threshold without inflicting oscillations.
The three plots to the left depict the root-locus of the linearized closed-loop dynamics in the complex plane for three values of the cutoff
frequency ω0 as the integral gain KI is increased from zero up to its upper bound given in Equation (S12). Note that sb, calculated
analytically in Equation (S25), denotes the breaking point where two eigenvalues meet on the real axis and break away to become complex
conjugates. As ω0 is increased, one real eigenvalue moves more to the left and the breaking point sb tends to −γ1/2. This indicates that
the dominant eigenvalue is confined (by the breaking point sb) within a small region close to the imaginary axis when γ1 is small, and
thus imposing a limitation on the achievable performance as demonstrated in the simulations shown in the right plot. (b) and (c) Design
flexibility offered by sAIF. Giving rise to a filtered-PI controller, sAIF offers more flexibility in achieving superior performance compared to
rAIF. These two panels show the steps of a pole-placement control design problem where the three dominant poles are placed on the real
axis of the left-half plane to ensure a stable and non-oscillating response. The design problems start by picking the poles, then computing
the PI gains and cutoff frequency, and finally computing the biomolecular parameters that allow us to obtain the nonlinear simulations to
the right. With degradation actuation in Panel (b), one can place the eigenvalues arbitrarily as far to the left as desired and thus achieving
a response that is as fast as desired without overshoots or oscillations. In contrast, with repression in Panel (c), there is a restriction on
how far to the left the poles can be placed. However, this restriction can be mitigated by introducing higher cooperativity. (d) Repression
without cooperativity. Without cooperativity, the three poles cannot be placed in the same location. To this end we place them at two
locations on the real axis. The shaded regions in the left plot depicts the feasible locations that are constrained by the PI coverages (see SI
Section S4). These regions indicate that one cannot place all the poles to the left of −γ1 which still yields a better performance than rAIF,
but cannot outperform those presented in Panels (b) and (c). The numerical values of the parameters are γ1 = 1, µ = 5, θ = 1, κ1 = 10−5.
To change the setpoint at t = 0, µ is doubled.
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Figure S4: Dynamics of Average Concentrations in the Stochastic Setting. This figure presents the stochastic counterpart to the
simulations shown in Figs. 4 and S3. Biomolecular parameters are taken directly from the root locus analysis performed in the deterministic
setting, and stochastic simulations—averaged over 105 trajectories—are used to track the evolution of mean concentrations. The results
confirm that the same dynamic patterns persist under stochasticity, with a slight overshoot observed in some cases, which can be mitigated
by selecting less aggressive pole placements.
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Figure S5: Controlling three processes with rAIF, sAIF and fP controllers. (a) The processes to be controlled are denoted by P1,P2, and
P3. P1 is a birth-death process identical to that in Fig. 5(a). P2 is a process with two species which can be used to model gene expression
with X1 being the mRNA while X2 being the protein. For this model, k1 is the translation rate while γ1 and γ2 are the removal rates.
Finally P3 is similar to P2, but with an additional maturation step where X2 is converted to X3 at a rate c. Note that all arrows pointing
to a species indicate catalytic production reactions except the curved arrow which indicates a conversion reaction. Furthermore, the square
shaped arrowhead indicates either activation or repression. These processes are controlled by three different controllers: rAIF and sAIF
and a fP controller. (b), (c) and (d) displays the relationship between the coefficients of variation and expectations at stationarity for the
outputs. The left plots correspond to rAIF, while the right plots correspond to sAIF and fP feedback. The solid black lines are calculated

analytically using an equation similar to Equation (13) given by CV
[
X̄L

]
=

√
1+β

E[X̄L]
with β = 0, k1

γ1+γ2
and

k1c(c+γ1+γ2+γ3)
(γ1+γ3)(γ1+γ2+c)(γ2+c+γ3)

for P1,P2 and P3, respectively. In contrast, the remaining data points are computed empirically through the stochastic simulation
algorithm1, generating 104 − 105 trajectories on the Euler cluster (https://scicomp.ethz.ch/wiki/Euler). Numerical values for P1 are
γ1 = 0.1. Numerical values for P2 are: γ1 = k1 = 1, γ2 = 0.1. Numerical values for P3 are: γ1 = k1 = c = 1, γ2 = γ3 = 0.1. The controller
parameter values are as follows: α = 2, θ = 1, κ = 0.05, η ∈ [10−2, 102], k ∈ [10−3, 1], δ ∈ [0.1, 20], µ ∈ [1, 10].
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Figure S6: Steady-state error comparison: non-ideal sAIF controller vs. filtered proportional controller. (a) Closed-loop networks
illustrating the non-ideal sAIF controller and the filtered proportional controller. The topology of the non-ideal sAIF controller differs from
the ideal sAIF controller shown in Fig. 3, as the controller species Z1 and Z2 are subject to dilution at a rate δ. (b) Example process and
actuation mechanism used in numerical simulations. The process is a simple birth-death system with L = 1 species, where the disturbance
perturbs the degradation rate γ1 of the output. Both controllers share the same actuation mechanism, modeled by the function h, with α
representing the maximal production rate and κ the dissociation constant of the repressor Z2. (c) Numerical demonstration of steady-state
errors. In these simulations, the example process is regulated by the non-ideal sAIF controller with fixed parameters: γ1 = δ = 0.1,
α = 2, and κ = 0.05. The swept parameters are µ ∈ [0, 10], η ∈ [0, 104], and θ ∈ [10−5, 10]. Note that when η = 0, the system reduces
to the filtered proportional controller. A disturbance is applied by halving the degradation rate. The 3D plot on the left illustrates the
steady-state error caused by the disturbance as µ, θ, and η are varied. For each combination of these parameters, the steady-state error
and the corresponding setpoint are computed and represented as points in the plot. The results indicate that, for any given setpoint, the
filtered proportional controller (η = 0) exhibits the highest steady-state error. As η increases, the steady-state error decreases, with the
minimum error achieved as η → ∞. The plot on the right provides detailed examples for specific parameter values. The blue responses
correspond to a fixed µ = 10, with θ adjusted to maintain a pre-disturbance setpoint of 10. The magenta responses correspond to a fixed
θ = 5, with µ tuned to achieve a pre-disturbance setpoint of 5. These examples highlight the dependence of steady-state error on parameter
tuning and demonstrate the improved performance of the non-ideal sAIF controller as η increases.
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Figure S7: Dynamic performance vs. steady-state error for non-ideal sAIF and rAIF Controllers. (a) Closed-loop network diagrams
of the sAIF and rAIF controllers, highlighting the scanned parameters. (b) Regulated network and actuation functions. The regulated
network consists of a simple single species process whose production is controlled by the feedback controllers, while its degradation rate γ1
is disturbed by halving its value. The actuation is modeled via activating and repressing Hill functions for the rAIF and sAIF controllers,
respectively, with α as the maximal production rate and κ as the dissociation constant. (c) Simulation results. Controller parameters
µ, θ, η, α, and κ were jointly scanned, and for each combination, the pre-disturbance steady-state level, post-disturbance steady-state error,
and settling time were computed. Each parameter set corresponds to a data point—shown in blue for sAIF and red for rAIF. The sAIF data
points (blue) extend further downward, indicating that sAIF can simultaneously achieve faster settling times without sacrificing steady-state
errors. This demonstrates that sAIF relaxes the trade-off between dynamic performance and steady-state error more effectively than rAIF,
due to the additional control afforded by its proportional component. Representative data points for sAIF (square) and rAIF (triangle)
are highlighted and their dynamic responses are shown in the right-hand-side plots with slices of the 3D plot binned over 3 pre-disturbed
steady-state levels. Simulation details: γ1 = δ = 0.1, µ, θ, α ∈ [0.1, 10], η ∈ [10−5, 103], κ ∈ [10−3, 0.1]. Settling time was defined as the
time required for the signal to enter and remain within a 1% tolerance band around the new steady state. Simulations were performed
in MATLAB over a grid of 305 parameter combinations using a workstation with 128 parallel threads. The three slices are binned across
three steady-state output levels (pre-disturbance) given by 2, 10 and 20 with a bin width of 0.04. The number of data points collected for
each slice are shown in the titles of the plots.
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Figure S8: Comparison of stationary noise between the non-ideal sAIF and filtered proportional (fP) controllers in feedback with three
regulated networks consisting of (a) one species, (b) two species, and (c) three species. Panel (a) is identical to Fig. 6(e) and is included
here for convenience. In all cases, the actuation function is u = α

1+z2/κ
with fixed α = 2 and κ = 0.05, while δ ∈ [10−3, 10−1] is varied

for both controllers. For the non-ideal sAIF controller, θ ∈ [10−5, 10], µ ∈ [10−1, 10], and η ∈ [10−5, 105] are also varied across all three
networks. For the fP controller, θp ∈ [10−5, 10] is varied. The simulations consistently show that for a fixed repressor Z2 (and thus the
actuation mechanism hs), the non-ideal sAIF controller either outperforms or matches the fP controller in reducing stationary noise in the
output. The numerical values of the parameters of the three regulated networks are as follows: (a) γ1 = 0.1, (b) γ1 = k1 = 1, γ2 = 0.1,
and (c) γ1 = c = k1 = 1, γ2 = γ3 = 0.1.
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Figure S9: Numerical analysis in the presence of both intrinsic and extrinsic noise. (a) The three open-loop circuits under consideration,
filtered proportional control, and sAIF control. In OL 1 and the filtered-proportional control circuit, plasmid 1 serves as a dummy plasmid
in the experiments—included solely to ensure that all circuits operate under comparable plasmid burden but do not affect the output.
However, it does not influence the regulated output X1. Similarly, in OL3, both plasmids 1 and 2 are dummy plasmids and do not
affect X1, serving only to maintain consistent experimental conditions. (b) This panel shows the experimentally measured distributions
of plasmid copy numbers for three plasmids: p15A, pSC101, and ColE1, as reported in2. These distributions are used to model extrinsic
noise in our simulations. Specifically, the propensities of the production reactions in the model (as in Fig. 6) are multiplied by the plasmid
copy numbers N1, N2, and N3, which are now treated as random variables sampled from these distributions. As noted in2, the standard
deviations are comparable to the means, highlighting the significant cell-to-cell variability in plasmid abundance. (c) The circuits shown
in panel (a) are simulated under the same conditions as in Fig. 6, with the key difference being that plasmid copy numbers are now drawn
randomly from the distributions shown in panel (b). This introduces extrinsic variability in addition to the intrinsic noise already present.
The resulting plot—identical to Fig. 7(e)—is included here for convenience. The fixed and swept parameter values used in the simulations
are listed on the right, and can be directly compared with those used in the intrinsic-noise-only case of Fig. 6(e).
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Figure S10: Time-course experiments illustrating the dynamic response of the output to a disturbance. This figure extends Fig. 7(b) by
including an additional experiment for the filtered proportional controller, where Gene 2 is driven by both strong and weak promoters. In
contrast, Fig. 7(b) depicts only the response for the weak promoter case. Here, we show that the output level, measured in Molecules of
Equivalent Fluorochrome (MEF), for the sAIF controller falls between the two levels observed for the filtered proportional controller under
strong and weak promoter conditions. Notably, the sAIF controller exhibits significantly improved adaptation, achieving a much smaller
steady-state error compared to both cases of the filtered proportional controller.
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Figure S11: Bar graphs showing the unnormalized data presented in Fig. 7(c). All measurements reported here are in Molecules of
Equivalent Fluorochrome (MEF) units.
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Figure S12: Noise amplification in an rAIF controller. The data in this panel are adapted from previously published measurements of an
rAIF controller implemented using Sigma/anti-Sigma sequestration3. The two distributions compare the output noise level in the open-
and closed-loop circuits with comparable mean levels. Although the rAIF successfully achieved RPA (see3), it increases the CV by more
than fourfold relative to the open-loop circuit. Note that the mean superfolder GFP output (FL1-A) and CV of previously published flow
cytometry measurements of rAIF (0.2% arabinose, 7 nM 3OC6-HSL) and open loop (0.2% arabinose, 0 nM 3OC6-HSL) strains from Aoki
et al. (Extended Data Fig. 6(d))3 are calculated and plotted here.
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Plasmid Gene type Circuits Description

pSKA837 1 OL1, OL2,
fP

PJ23119-B0033-intC(gp41-1)-B0015, p15A ori, specR

pSKA838 1 OL3, sAIF PJ23119-B0033-intN(gp41-1)-B0015, p15A ori, specR

pSKA839 2 (weak) OL2, OL3 PJ23111-B0033-tetR1-183::intC(gp41-1)::tetR184-212-B0015, pSC101 ori, camR

pSKA840 2 (strong) OL1, OL2,
OL3

PJ23119-B0033-tetR1-183::intC(gp41-1)::tetR184-212-B0015, pSC101 ori, camR

pSKA841 2 (weak) fP, sAIF ParaB-B0033-tetR1-183::intC(gp41-1)::tetR184-212-B0015, pSC101 ori, camR

pSKA842 2 (strong) fP, sAIF ParaB-AraJ-B0033m-tetR1-183::intC(gp41-1)::tetR184-212-B0015, pSC101 ori, camR

pSKA843 3 OL2, OL3,
fP, sAIF

PLtetO-1-B0033-V5::araC::mScarlet-I-B0015, ColE1 ori, carbR

pSKA884 3 OL1 PJ23101*-V5::araC::mScarlet-I-B0015, ColE1 ori, carbR

pSKA885 3 OL1 PJ23114-V5::araC::mScarlet-I-B0015, ColE1 ori, carbR

pSKA886 3 OL1 PJ23106-V5::araC::mScarlet-I-B0015, ColE1 ori, carbR

pSKA887 3 OL1 PJ23102-V5::araC::mScarlet-I-B0015, ColE1 ori, carbR

pSKA888 3 OL1 PJ23111-V5::araC::mScarlet-I-B0015, ColE1 ori, carbR

pSKA889 3 OL1 PJ23119-V5::araC::mScarlet-I-B0015, ColE1 ori, carbR

Table S1: List of plasmids constructed and used in this study. Plasmid sequences can be found at the following Github repository
https://github.com/Maurice-Filo/Sensor-Based-Biomolecular-Integral-Controllers.

Circuit Gene 1 Gene 2 promoter Testing strain Host strain Plasmids (in order: Gene type 1, 2, 3)

Open loop 1 intC strong SKA1838 SKA360 pSKA838, pSKA840, pSKA884

Open loop 1 intC strong SKA1839 SKA360 pSKA838, pSKA840, pSKA885

Open loop 1 intC strong SKA1840 SKA360 pSKA838, pSKA840, pSKA886

Open loop 1 intC strong SKA1841 SKA360 pSKA838, pSKA840, pSKA887

Open loop 1 intC strong SKA1842 SKA360 pSKA838, pSKA840, pSKA888

Open loop 1 intC strong SKA1843 SKA360 pSKA838, pSKA840, pSKA889

Open loop 2 intC weak SKA1785 SKA360 pSKA838, pSKA839, pSKA843

Open loop 2 intC strong SKA1787 SKA360 pSKA838, pSKA840, pSKA843

Open loop 3 intN weak SKA1784 SKA360 pSKA837, pSKA839, pSKA843

Open loop 3 intN strong SKA1786 SKA360 pSKA837, pSKA840, pSKA843

Filtered P intC weak SKA1789 SKA360 pSKA838, pSKA841, pSKA843

Filtered P intC strong SKA1791 SKA360 pSKA838, pSKA842, pSKA843

sAIF intN weak SKA1788 SKA360 pSKA837, pSKA841, pSKA843

sAIF intN strong SKA1790 SKA360 pSKA837, pSKA842, pSKA843

Table S2: List of testing strains constructed and used in this study.
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