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SUMMARY

Effective cellular regulation relies on feedback control
mechanisms to maintain homeostasis and mitigate en-
vironmental fluctuations. Simple repression-based neg-
ative feedback is a widely used regulatory strategy, but
it provides limited adaptation capabilities and struggles
to effectively reject disturbances. Here, we theoreti-
cally and computationally demonstrate that a sensor-
based Antithetic Integral Feedback (sAlF) controller en-
hances this regulatory motif as it achieves robust adap-
tation while ensuring good transient performance and
intrinsic noise suppression. By leveraging a topolog-
ical refinement, sAIF embeds a proportional feedback
component within its integral feedback structure, effec-
tively implementing a biomolecular Proportional-Integral
(Pl) controller with a single actuation reaction. The-
oretical analysis and simulations reveal that sAlIF out-
performs conventional negative feedback and standard
AIF controllers, achieving superior response speed and
lower cell-to-cell variability. We implement this con-
troller in Escherichia coli using inteins—self-splicing pro-
tein segments—to construct a genetically encoded feed-
back loop. Experimental results confirm that sAIF pro-
vides rapid adaptation and robust disturbance rejection
over a broad dynamic range. Furthermore, we show
that at low expression levels—where noise is most pro-
nounced—the sAIF controller exhibits lower total noise
than the parts-matched, no-feedback configuration in a
multi-plasmid context that introduces extrinsic noise due
to plasmid copy-number variability. This observation is
supported by simulations incorporating both intrinsic and
extrinsic noise. These findings establish a generalizable
design principle for engineering high-performance bio-
logical controllers, with broad implications for synthetic
biology, metabolic engineering, and cell-based thera-
pies.
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INTRODUCTION

Living cells are complex dynamical systems that inter-
act with their environment and endure disturbances that
can disrupt their biomolecular processes. To robustly

maintain homeostasis, cells often rely on exquisite feed-
back control mechanisms™#. Synthetic biology® aims to
mimic and enhance these natural control capabilities by
engineering biomolecular systems and embedding them
inside the cells to sense, compute, and actuate in a pro-
grammable manner®Z. A major challenge in this field
is designing feedback controllers capable of managing
noise and uncertainty while achieving precision and high
performance. Advances in control-theoretic tools®2
have driven progress, giving rise to Cybergenetics®, a
discipline at the intersection of synthetic biology and con-
trol theory, fostering novel strategies for engineering re-
silient biomolecular systems.

One of the fundamental tasks of synthetic biomolec-
ular feedback controllers is to maintain homeostasis, a
critical property with transformative potential in fields like
bioproduction, metabolic engineering, and cell-based
therapies, where many diseases stem from homeostatic
failure®. Robust Perfect Adaptation (RPA)*>"1Zs g strin-
gent form of homeostasis, ensuring exact steady-state
regulation of a target variable to a setpoint despite vary-
ing initial conditions, uncertainties, and constant distur-
bances. Achieving RPA often requires integral feedback,
which drives the steady-state error—the deviation from
the desired setpoint—to zero by mathematically integrat-
ing the error signal over time®1°, The antithetic integral
feedback (AIF) controller?? implements this mechanism
as a biochemical reaction network, capable of achieving
RPA in both deterministic and stochastic settings where
noise enter the dynamics. Stochastic noise“! can be cat-
egorized as intrinsic, arising from the random timing of
biochemical reactions, or extrinsic, stemming from varia-
tions in global cellular factors such as plasmid copy num-
ber, gene expression capacity, or cell size. The AlIF mo-
tif is proven to be both necessary and minimal for RPA
in the stochastic regime##3. Supported by control the-
ory, AlF-based controllers and their variants have rapidly
found their way to experimental implementations in Es-
cherichia coli#?2425 gnd mammalian cells67<8,

Since its introduction, efforts to enhance the AIF
controller have focused on optimizing dynamic trade-
offs=¥31 or incorporating additional circuitry®=*1, includ-
ing Proportional-Integral-Derivative (PID) controllers and
anti-windup strategies. Standalone integral controllers,
such as AIF, face limitations: they can only partially
shape the dynamic response®23 and achieve RPA at the
cost of increased intrinsic stochastic noise®442 or ener-
getic burden?, resulting in elevated cell-to-cell variabil-
ity. These drawbacks can be mitigated by adding propor-
tional and derivative components. In particular, adding
proportional feedback was shown to improve dynamic
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Figure 1: Sensor-based antithetic integral feedback (sAIF) controllers not only achieve Robust Perfect Adaptation (RPA) but also improve dynamic performance and
reduce intrinsic cell-to-cell variability. The figure illustrates four genetic circuits for robustly regulating a target output within an arbitrary network. The top-left shows an
open-loop configuration without feedback, while the bottom-left depicts a (filtered) proportional feedback controller providing negative feedback from the regulated output
via the sensor gene. The top-right and bottom-right circuits represent reference-based (rAIF) and sensor-based (sAIF) AIF controllers, where two genes encode mutually
sequestering proteins. Both AIF circuits include a constitutively expressed reference gene, differing in actuation mechanisms via the reference or sensor genes. The plots
show that neither the open-loop nor proportional controllers achieve RPA, though the proportional controller reduces steady-state error compared to open-loop. In contrast,
rAlF and sAIF both achieve RPA, with sAIF surpassing rAIF by offering superior dynamics and reduced variability, a feat paralleled by the proportional controller. These
properties are supported by theory and experiments, attributed to a “hidden” proportional component within the sAIF design.

performance and reduce noise®24,

In this paper, we examine and genetically implement
a simple variant of the AIF motif, first introduced in’®
Fig. S1 and more recently studied in“2. This variant re-
tains the basic AIF network topology but replaces one
actuation reaction, forming a sensor-based AlF topol-
ogy (sAIF) shown in Fig. While initially regarded as
a standalone integral controller, we demonstrate that it
contains a “hidden” proportional component, realizing a
minimal Proportional-Integral (Pl) controller. The design
is minimal in that it introduces no new species or reac-
tions to the antithetic motif, which is shown to be the
minimal integrator in the stochastic setting®®. Instead,
a single reaction is replaced. This subtle modification
yields all the added benefits of proportional control, in-
cluding improved dynamic response and intrinsic noise
attenuation, without imposing any additional complexity
or burden relative to the original integral controller.

To implement the sAIF controller in bacteria, we uti-
lized inteins for genetic engineering®. Inteins are pro-
teins that perform protein splicing reactions without ad-
ditional cofactors“3™S. Split inteins, referred to as IntN
and Int®, enable sequence exchange, cleavage, or liga-
tion by flanking protein domains, offering versatile func-
tionalities. Previously, we used split inteins to construct
reference-based AIF controllers in mammalian cells?®
(Fig.[1). Building on this, we engineer the first biomolec-
ular Pl controller in E. coli by employing split inteins to
implement a sensor-based AlF topology. Our experimen-
tal results confirmed its theoretically predicted ability to
achieve RPA. The high dynamic performance observed

in E. coli, alongside our prior mammalian cell study, high-
lights inteins’ versatility across life domains. While our
theoretical analyses focus on intrinsic noise, our exper-
imental data also reflect the impact of extrinsic noise
arising from plasmid copy number variability in our multi-
plasmid design. Even under these conditions, the data
show that at low expression levels, closed-loop imple-
mentations (including that of the sAIF controller) exhibit
lower total noise than open-loop implementations with
comparable plasmid copy number variability, consistent
with stochastic simulations that account for both intrinsic
and extrinsic noise.

Notation

Uppercase bold letters, e.g. X4, denote species names.
Their lowercase counterparts, e.g. z;(t), represent de-
terministic time-varying concentrations, while uppercase
counterparts, e.g. X; (¢), represent stochastic copy num-
bers, with ¢ as time. Over-bars, e.g. 1 £ lim;_,o z1 (1),
indicate steady-state values (when they exist). Tildes,
e.g. i1(t) £ x1(t) — 71, represent deviations from steady-
state, and hats, e.g. Z;(s), denote the Laplace transform
of Z1(t), where s is the Laplace variable. Variables s and
t are omitted when clear from context. The Jacobian of a
multi-variable function f, evaluated at z € R, is ().
R’ and R™ are sets of n-dimensional vectors with non-
negative and non-positive entries, respectively. e; is a
vector of appropriate size with all zeros except for the "
entry, which is 1. E[X;] and CV[X;] denote the expecta-
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Figure 2: Biomolecular feedback controllers: framework and basic motifs. (a) Closed-loop network: An arbitrary regulated network is in a feedback interconnection with a
controller network whose objective is to endow the regulated output of interest X, with Robust Perfect Adaptation (RPA), high dynamic performance, and reduced cell-to-
cell variability. (b) Examples of actuation mechanisms. A single controller species Z actuates X via positive (activating production/blocking removal) or negative (blocking
production/activating removal) control, determined by the sign of du/0z. Examples of the functional forms of u are provided. Note that £(z) denotes the functional
form of degradation. Extended mechanisms with two control species are in SI Fig. (c) Reaction motifs for elementary biomolecular controllers. Left: An intermediate
species Z3 is produced by the output X, at a rate 0z 1,, degrades at a rate § and closes the loop by negatively actuating the input X;. Right: An intermediate species Z; is
constitutively produced at a rate u, degrades at a rate §’ and positively actuates the input X4. (d) The underlying control architectures of the basic controller motifs. Note
that P(s) is the process transfer function. Linear analysis shows direct feedback realizes a proportional controller (see S| Section|S1.1) while indirect feedback through Z,
realizes a low-pass-filtered proportional controller with cutoff frequency wo and gain K p. In contrast, actuation with Zy enables low-pass-filtered feedforward control with

gain K and cutoff frequency wy.
tion and coefficient of variation of X;.

RESULTS

A Framework for Biomolecular Feedback Controllers

The closed-loop network in Fig. [2(a) provides a general
framework for biomolecular controllers. It consists of a
regulated network (the process) with L species: Xy, Xo,
..., XL, and a controller network with M species: Z;,
Zy, ..., Zy. The networks interact through (1) a sens-
ing reaction, where the regulated output X, influences
controller species, and (2) an actuation reaction, where
controller species influence the actuated input Xy. The
goal is to design a controller network that ensures RPA,
maintaining a constant steady-state concentration of X,
despite uncertainties, persistent disturbances, and vary-
ing initial conditions. The controller must also provide
good dynamic performance and suppress noise.

We consider the actuation mechanisms in Fig. [2[b),
classified as positive or negative and implemented
through production or removal reactions. Positive actu-
ation increases production or decreases removal, while
negative actuation reduces production or increases re-
moval. This is determined by the derivatives of the con-
trol action u, defined next. The actuation reactions and
their propensities are

propensity: ht(z)
propensity: h~ (2)&(x1),

g — X1

(1)

X1—>®

where h* define the actuation mechanisms and &(z;)
represents degradation, e.g. &(z1) = z1/(z1 + k) for
modeling saturation effects. The total control action is

u=h(z;z1) £ h*(2) = h™ (2)&(x1). (2)
Examples of u’s functional forms are listed in Fig. [2(b).
With this framework, the deterministic dynamics of the

closed-loop network in Fig. [2(a) are

process: i = rp =elx

controller:

f(z) + uey;
i=g(z,2L); u = h(z xr;21),

3)
where f,g,h are differentiable functions modeling the
regulated network, controller dynamics, and control
action, respectively, and =z = [xy,...,2.]7, z =
[21,..., 20T . As such, the feedback control problem re-
duces to designing g and h that ensure RPA while achiev-
ing high dynamic performance and possibly suppressing

noise in the stochastic setting.

Biomolecular Proportional & Feedforward Control

Consider the two basic control topologies depicted in
Fig. [2(c): filtered proportional (fP) feedback and fil-
tered feedforward (fF). Their dynamics are compactly ex-
pressed as:

SH=p—082z examples of h | parameters
. a /
u=hzzmin), g k1 6=5=0

A linear perturbation analysis (detailed in Sl Sec-
tion reveals the controller transfer function relating
zptouas

wh wo
~ :K 0 ~ _K N
U(S) Fs+w6M(s) Ps+w0 xL(s), (5)
0
where Kpé%; Kpé%; w26 wh2§,

and Oh(z;, z; 7,) £ [01 —09 UI] with 01,09 > 0. The
transfer function in Equation [5, linking the controller’s
output to its input in the Laplace domain, allows us to
draw the block diagrams depicted in Fig. [2(d) which un-
ravel the architectures of the two controllers. The fP
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Figure 3: Assembly of  biomolecular a
Proportional-Integral (PI) controllers: inte-
grating a sequestration motif with the basic
controller topologies from Fig. [2c). (a)
Different Antithetic Integral Feedback (AIF)
reaction motifs. ~ The reference-based AlF
(rAlIF) controller is obtained by assembling a
sequestration motif with the filtered feedforward
motif from Fig. [Zfc). The sensor-based AIF
(sAIF) controller is obtained by assembling a
sequestration motif with the filtered P Feedback
motif from Fig. [ZJc). The key difference lies in
the actuation reaction: rAIF uses the reference
molecule Z; for positive actuation, while sAIF
uses the sensor molecule Zp for negative
actuation. This simple but subtle difference
results in entirely distinct control architectures.
(b) Underlying control architectures. The b

rAIF
filtered (I + FF)

sAIF
filtered PI

block diagram compactly represents the two
controllers operating in closed loop, color-coded
to match panel (a). The rAIF appends the

integrator with a feedforward component with
gain K, while the sAIF appends it with a

proportional component with gain Kp. The
resulting Pl architecture is thus achieved

through a single actuation reaction.

controller passes a proportional control action —KpZp,
through a low-pass filter, which is realized as a simple
birth-death process via an intermediate species Z, be-
tween the output X, and input Xy. Note that direct neg-
ative actuation of the X4 by the X, without an interme-
diate species, results in a non-filtered proportional con-
troller (see Sl Section [S1.1), which is more challenging
to implement biologically. Finally, the fF controller has no
feedback from X, but it also includes a low-pass filter.

Biomolecular Proportional-Integral Control

Next, we “append” the basic controller motifs listed in
Fig. [Zlc) to the sequestration motif — which lies at the
heart of the AIF controller<? — to obtain the two topolo-
gies in Fig.[3(a). The reference-based (rAlF) and sensor-
based (sAIF) controllers are obtained by appending the
sequestration motif to the filtered feedforward and fil-
tered proportional components from Fig. [2(c), respec-
tively. The dynamics for both controllers can be com-
pactly expressed as

A= pmna % (sAIF)

2o =0xp —nz129 €.0.u= L+ (z2/K)"

u = h(z1,22;21), kz1 (rAlF).
(6)

Equation [f] differs from Equation [4] by replacing simple
removal terms with sequestration terms. This is the key
modification that leads to a robust steady-state output
given by z;, = /6, assuming stability. A linear pertur-
bation analysis (see Sl Section reveals the con-
trol architectures, summarized in the block diagram in
Fig. [3(b). The rAIF topology implements integral and
feedforward control, both passed through a low-pass
filter, while the sAIF topology realizes a Pl controller
passed through a low-pass filter. Note that the propor-
tional component acts on the output rather than the error
signal, consistent with the two degrees of freedom con-
figuration (see Fig. 10.1). While error feedback could
be implemented by adding an additional external actu-

"
R Feedforward Low-Pass Filter Process .
it é [ s i Zp
— + > — >( + > > P(s) =
"/ Error s Integrator \T/ s+ wo
% -
» Kp - .
Proportional Sensor Gain
Kg [«

ation of X{°, it is omitted here to reduce the genetic
components required for circuit construction.

Filtered Pl Coverage

To conduct a simulation-free evaluation of the dynamic
capabilities of the various controller topologies, we ex-
amine the achievable ranges of the gains (Kp, K;) and
the cutoff frequency wy. Specifically, we ask: can these
parameters be tuned to any desired value, and if not,
what ranges are achievable? Of course, a broader
range indicates greater flexibility in shaping the dy-
namic response. To address these questions, we first
establish a bi-directional mapping between biomolec-
ular parameters and the gain/cutoff-frequency param-
eters, translating biological constraints (e.g., positivity)
into the gain/cutoff-frequency space to reveal the attain-
able ranges. Here, we present the results for the sAlF
topology, with details in SI Section

Consider the sAIF controller in Fig. 3(a). We treat
two biologically-relevant functional forms of h implement-
ing the two negative actuation mechanisms shown in
Fig. [2[b). Specifically, we have u = h(z2; 1) with

e (Repression)
h(zg;21) = § 1+ (22/m)" (7)
a —v2z06(x1) (Degradation),
where £(z1) = %2—. As established in SI Section

the achievable gain and cutoff frequency sets for repres-
sion (S;') and degradation (S;) are

St = {(KP,KI,wO) eR} :Kp< nE, K; <wKp (1 - @)}
1% nu
Sqg = {(KP,K],U.)()) S Ri (K < WQKP},

(8)
where @ is the supporting input that depends solely on
the desired setpoint and the process (see Sl Section
Assumption [1]). Observe that for all n = 1,2,---, we
have S c S**' < S, and S converges to S, as
n — oo. Equation [g]indicates that repression constrains
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the achievable proportional and integral gains Kp and
K, but increasing cooperativity n expands the range,
thus offering more flexibility in tuning the filtered Pl pa-
rameters. Degradation, by contrast, constrains only the
integral gain K;. Note that these filtered PI controllers
have more constrained achievable ranges compared to
two-reaction Pl controllers®253, reflecting the trade-off for
embedding proportional and integral feedback in a single
actuation reaction.
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Figure 4: Dynamic Performance Assessment. A birth-death process (see Fig.a),
left) is controlled by rAIF and sAIF. (a) rAIF Performance Limitation. The response
cannot be sped up beyond a certain threshold without inflicting oscillations. The
left plot shows the locus of the eigenvalues as the integral gain K is increased
while the cutoff frequency wy is fixed. Note that s, calculated analytically in Equa-
tion denotes the breaking point where two eigenvalues meet on the real axis
and break away to become complex conjugates. As wy is increased, one real eigen-
value moves more to the left and the breaking point s; tends to —~1 /2. Therefore,
the dominant eigenvalue is confined by the breaking point s; which imposes a limi-
tation on the achievable performance as demonstrated in the simulations. (b) and (c)
sAIF Design Flexibility. These two panels show the results of pole-placement where
the three closed-loop eigenvalues are placed on the real axis of the left-half plane
to ensure a stable and non-oscillating response. Unlike with repression actuation,
degradation actuation allows us to place the eigenvalues arbitrarily as far to the left
as desired to obtain a step-like response. However, cooperativity helps in mitigating
the restriction with repression actuation. The numerical values of the parameters
arey; = 1,u = 5,0 = 1,k = 1072, To change the setpoint att = 0, u
is doubled. A more detailed version of this figure showing the mappings from the
eigenvalues to the gains and biomolecular parameters can be found in SI Fig.

sAIF Controllers Enhance Dynamic Performance

Next, we demonstrate, analytically and through sim-
ulations, that sAIF offers more flexibility in shaping
the dynamics compared to rAIF. We also explore the
performance-enhancement capabilities of the two neg-
ative actuation mechanisms. We adopt a root locus
methodology similar to the one used in our previous
work®2, where we analyzed other network topologies.

Consider the closed-loop dynamics of a simple one-
species birth-death process, i.e. f(z) £ —yz + u,
which is sufficient to highlight the proportional compo-
nent’s added flexibility. The process transfer function is
P(s) = 5= Using the block diagram in Fig. 3(b), the
closed-loop transfer function for the linearized dynamics
of rAIF (Kp = 0, Kr > 0) and sAIF (Kp > 0, Kp = 0) is
calculated as H(s) £ 205, with

H(S)Z WO(KFS—I—KI)

(9)

Root-locus analysis (see S| Section[S3) shows that for
rAlF, at least one pole cannot be placed left of s = — 2
regardless of how K7 is tuned or how fast the cutoff fre-
quency wy (i.e. sequestration rate n) is. This limits rAIF’s
response speed to a threshold dictated by 4. This lim-
itation is analytically established in Sl Section and
illustrated in Fig. [4(a).

This is exactly where the filtered-proportional compo-
nent, enabled by actuation via Z, instead of Z4, adds cru-
cial flexibility. To illustrate this, consider the pole place-
ment design problem: the goal is to select Pl gains
(Kp, K1) and cutoff frequency wy to place the three
closed-loop poles at s = —a. For stability, « > 0 should
place the poles in the left-half complex plane, on the real
axis to avoid oscillations, and farther left for faster tran-
sient responses. We investigate whether sAIF, with re-
pression or degradation actuation, can achieve this. If
s0, we analyze the achievable pole placement range and
its impact on the dynamics.

First, we aim at placing the three closed-loop poles at
the same location s = —a. As a result, the characteristic
polynomial is given by

p(s) = (s +a)® = s> +3as® + 3a*s +a>.  (10)
Equating p(s) to the denominator of H(s) allows us to
express the designed Pl gains (Kp, K1) and cutoff fre-
quency wy in terms of the birth-death parameter ~4, the
sensing gain Ks and the placed pole —a as

_ 3a®—y1(8a—m) _ a? —
Kp = "5itamn K1 = megany wo=3a-m.
(11)
The sets of achievable Pl gains and cutoff frequencies in
Equation [8] constrain the achievable poles s = —a to the

following regions on the real axis

Rep: (Kp,Kj,wy) €S =  si(n)m < a < sy(n)m

1
a>l,

Deg: 5

(Kp,Kr,wp) € Sq =
(12)

s34+ (wo +71)s2 +wo (m + KpKg)s +woKsK;
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Figure 5: Stochastic noise attenuation capabilities and limitations. (a) We examine a case study for the process to be regulated: a birth-death process. Note that the
square shaped arrowhead indicates either activation or repression. Two additional case studies for processes with a higher number of species are shown to exhibit the
same conclusions in S Fig. (b) The process is controlled by three different controllers: rAlF and sAIF, which supplement integral controllers with filtered feedforward
and proportional components, respectively, and a fP controller without an integrator. (c) displays the relationship between the coefficients of variation and expectations
at stationarity for the regulated output Xy. The left plot corresponds to rAlF, while the right plot corresponds to sAIF and fP feedback. The key takeaway from these
plots is that rAIF can only increase noise compared to the open-loop scenario, while sAIF can attenuate noise to a certain extent, limited by a “hidden” proportional
component. The simulations support the notion that integral controllers amplify noise, whereas proportional controllers attenuate it. The solid black lines are calculated
analytically using Equation while the various circles are computed empirically through the stochastic simulation algorithm®, generating 10* — 10° trajectories on

the Euler cluster (https:/scicomp.ethz.ch/wiki/Euler). Numerical values for the birth-death process are: v; = 0.1. The controller parameter values are as follows:
a=2,0=1,k=0.05n¢€ [1072,10%],k € [1073,1],§ € [0.1, 20], u € [1, 10].

where s;(n) and s, (n) are calculated analytically in S
Section With degradation actuation, there is no
theoretical upper limit on pole placement, as shown in
Fig.[4(b), where poles can be moved far left to achieve an
ideal step-like response. This highlights sAlF’s ability to
fully shape the dynamics of a birth-death process, unlike
rAlIF. In contrast, repression actuation constrains pole
placement to the open set R(n) = (—syu(n)vy1, —si1(n)71).
Without cooperativity (n = 1), we have s;(1) = s,(1) =1
and thus R(1) is empty, making it impossible to place
poles at the same location. For n = 2, R(2) expands
(s1(2) = 0.7082, s,,(2) =~ 2.1769), showing cooperativity is
necessary for single-location pole placement. Higher co-
operativity (n > 2) further broadens R(n), as illustrated
in Fig. [4fc). Finally, the case where repression is used
without cooperativity (n = 1) is treated separately in SI
Section Here, the poles must be placed at two lo-
cations. The transient response speed is shown to be
limited by ~4, still exceeding the rAlF threshold of ~, /2.
Additional details are in Sl Fig. [S3|(d). Similar behav-
iors were observed in the nonlinear stochastic simula-
tions, as shown in Sl Fig. which depict the evolu-
tion of average concentrations. This is expected, as the
pole placement derived from the linearized deterministic
models serves as an approximate analysis of the mean
dynamics for the stochastic setting under the linear noise
approximation.

In conclusion, this case study demonstrates that
sAIF outperforms rAIF in dynamic performance. Us-
ing degradation for sAIF’s negative actuation allows ar-
bitrary acceleration of the transient response of a birth-
death process without overshoots or oscillations. While
repression-based actuation also improves performance
compared to rAlF, it cannot achieve arbitrary speed.
However, this limitation is mitigated by adding cooper-
ativity to the repression. Note that cooperativity does not
help pole placement for the rAIF controller because, with
Kp =0, only two degrees of freedom (K, w) are avail-
able to place the three poles of the transfer function in
Equation[9] Thus, replacing the actuation u = kz; with a
cooperative Hill function still limits pole placement.

Limits of Intrinsic Stochastic Noise Attenuation

This section examines the intrinsic noise attenuation ca-
pabilities of rAIF, sAIF, and fP controllers in the stochas-
tic setting. Noise is defined as the relationship between
the coefficient of variation (CV) and the expectation at
stationarity42. We consider the simple birth-death model
of Fig. [Bfa) as the process, controlled by the rAIF, sAIF
and fP controllers of Fig. [5[b). Two processes with more
species are also presented in SI Fig. Throughout the
analysis, the process parameter v, is fixed, and nega-
tive actuations are implemented as repression reactions.
In the open-loop case, the actuation u = « is constant,
resulting in a unimolecular network with closed moment
equations. The stationary CV of the output is explicitly
expressed in terms of the expectation as

CV[X,] = Eplg] .

(13)

This analytical expression is shown as a solid black curve
in Fig. [Blc). Stochastic simulations for the closed-loop
scenarios with each controller are carried out to com-
pute stationary expectations and CVs across a range of
controller parameters. For rAlF, k, n, and p are varied
with ¢ fixed. Results, shown as data points in Fig. [5{c)
(left), reveal that rAIF increases noise compared to the
open-loop case. For sAIF, n and p are varied while «, «,
and 0 remain fixed. The simulation results, color-coded
by n, are depicted in Fig. [5[c) (right) and show that sAIF
control reduces noise below open-loop levels as demon-
strated previously by Kell et al.# through similar simu-
lations and linear noise approximations. We show that
this observation generalizes to more complex regulated
processes in Sl Fig. The key distinction from42 is
that we uncover the control-theoretic basis for the ob-
served noise attenuation and identify its lower bound, as
described next. Comparable simulations for the fP con-
troller are carried out by varying ¢ with the remaining pa-
rameters matched to those of the sAIF controller. The re-
sults are shown as purple points in Fig.[5|c) (right). This
suggests that the noise attenuation in sAIF control is at-
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tributable to a “hidden” proportional component, rather
than the integrator. In fact, as n increases in sAlF, noise
rises, consistent with the proportional gain K'p approach-
ing zero as n — oo.

Motivated by the outcomes of stochastic simulations,
we apply the linear noise approximation (LNA) technique
to obtain analytical expressions for the CV in the case
of a birth-death process. This analytical exploration is
detailed in Sl Section[S5] Through this analysis, we an-
alytically confirm the relationship observed between the
deterministic and stochastic frameworks, demonstrating
that noise levels indeed rise with an increase in , and
highlighting that the capacity of the sAIF controller to re-
duce noise is bounded by its filtered-proportional com-
ponent, as indicated in Equation [S52]

Steady-State Errors in Non-ldeal Settings

In practice, controller species always dilute at some rate
§, as illustrated in Fig. [B[a). It is well-known that this di-
lution effect introduces a “leaky integrator”, which results
in a steady-state errore?221, This raises a reasonable
question: given that steady-state error is inevitable with
dilution, why not simply use a (filtered) proportional con-
troller and avoid the added circuit complexity of incor-
porating an additional controller species? The following
theorem addresses this question by proving that even the
non-ideal sAIF controller consistently outperforms the fil-
tered proportional controller in terms of sensitivity to dis-
turbances.

Theorem 1. For any strictly monotonic regulated net-
work under a constant disturbance A, operating in nega-
tive feedback with either a non-ideal sAIF or filtered pro-
portional (fP) controller, assume identical dilution rate §
and strictly monotonic actuation mechanisms h for both
controllers (see Fig. [6(a)). At any desired steady-state
output x;, = r, the steady-state sensitivities to the distur-
bance satisfy

‘ o7L P

9, SAIF 19z,
0A

OA

Moreover, if either u or 0 is fixed and the other tuned to
maintain z = r, the sensitivity strictly decreases as the
sequestration rate ) increases.

The proof can be found in S| Section This re-
sult is general and applies to the deterministic setting
for any regulated process with a strictly monotonic dose-
response. Figure [B|b) illustrates a numerical demonstra-
tion, where the regulated process is a simple birth-death
process (see Fig. [5fa)). Steady-state outputs are com-
puted for various values of u, 8, and n (non-ideal sAlF
controller) and 6, (fP controller), both before and after in-
troducing a disturbance. The relative steady-state error,
plotted against the output before the disturbance, is con-
sistently lower for the sAIF controller compared to the fP
controller. A more detailed plot for the same example can
be found in Fig. [S6] demonstrating that the lower bound
of the error is achieved as n — oc.
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Figure 6: Non-ideal setting. (a) Closed-loop networks with non-ideal sAlIF, rAIF, and
fP controllers. Here, the fP controller is the same as that in Fig.Ekb), while the non-
ideal sAIF and rAIF controllers now include dilution of the controller species at the
same rate §. (b) Numerical demonstration showing the strictly lower steady-state
error achieved by the non-ideal sAIF compared to the fP controller. The regulated
network is a simple birth-death process with a disturbance affecting the degradation
rate. Parameters p, 6, n, and 0, are varied to plot the relative steady-state error
against the output before disturbance. The bottom plot shows time responses for
three cases, illustrating reduced error as n increases. More details including the
numerical values can be found in Sl Fig. (c) Actuation functions for sAIF and
rAlF controllers, ensuring fair comparison by matching the function values and their
derivative magnitudes (gain G). (d) Numerical comparison of steady-state errors for
non-ideal sAIF and rAlF controllers, using the same regulated network and distur-
bance as in panel (b). Parameters a,., as, -, and s are varied to plot the relative
steady-state error against actuation gain and pre-disturbance output. The results
show a performance switch as z;, crosses the threshold defined in Theorem|2| (e)
Comparison of noise between the non-ideal sAIF and fP controller. Both controllers
share the same actuation function h, with i, 6, n, 6, and 0, varied while other
parameters remain fixed. Stochastic simulations are conducted to empirically plot,
in 3D, the stationary CVs against the stationary expectation and dilution rate 6. For
clarity, two slices are shown for § € {1072, 10~ '}. The results demonstrate that,
in practical settings where the repressor and dilution rate are identical for both con-
trollers, the non-ideal sAIF consistently performs as well as or better than the fP
controller. Numerical values can be found in S| Fig.

We now present a theorem comparing the steady-
state sensitivities of the non-ideal sAIF and rAlF con-
trollers.

Theorem 2. For any strictly monotonic regulated net-
work under a constant disturbance A, operating in nega-
tive feedback with either a non-ideal sAIF or rAlF con-
troller, assume identical controller parameters p,0,n,
and ¢ for both controllers (see Fig.[6(a)). At any fixed
desired steady-state output zy, the steady-state sensi-
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tivities to the disturbance satisfy:

_ |SAIF _ rAIF 9
0z A -
oA oA 6 no
_ |SAIF _ rAIF 9
0z e -
oA oA 6 no

assuming the absolute value of the actuation gains of
both controllers are matched (see Fig.[g(c)).

The proof can be found in SI Section This re-
sult provides a complete characterization of when the
non-ideal sAIF and rAIF controllers outperform each
other in terms of steady-state sensitivities to distur-
bances. Notably, the condition is straightforward, de-
pending solely on the desired steady-state level z; and
the controller parameters u, 6, and §, without relying
on the specifics of the regulated process. Figure [6(d)
presents a numerical demonstration of relative steady-
state error across a range of actuation gains and pre-
disturbance outputs. The results clearly show that for a
desired setpoint below /0 — §2/n6, the non-ideal rAIF
controller achieves lower error, while the non-ideal sAIF
outperforms it above this threshold.

We conclude this section by analyzing the trade-off
between dynamic performance and steady-state error in
the non-ideal setting. A comprehensive simulation study
was performed, scanning all controller parameters for
both sAIF and rAlF designs to jointly evaluate steady-
state error and settling time. As shown in Sl Fig[S7|
the sAIF controller achieves faster settling times without
sacrificing steady-state accuracy. As predicted by Theo-
rem[2] the rAIF can yield slightly lower steady-state error
at low setpoints, but only at the cost of longer settling
times—highlighting the trade-off. The improved perfor-
mance of sAlF is, once again, attributed to its propor-
tional component, which offers an extra degree of control
and helps relax this trade-off.

Intrinsic Noise in Non-ldeal Settings

Simulation studies in Fig.[5]and Sl Fig.[S8] supported by
theoretical analysis, show that for a given setpoint, tun-
ing the degradation rate ¢ of Z, in the fP controller can
achieve the lowest stationary CV compared to the sAIF
controller for a fixed 6. However, in practice, tuning the
degradation rate may be difficult, while tuning 6 is easier
(as done experimentally in Fig. [7). Furthermore, dilution
affects both controllers similarly. To this end, we now ex-
amine the stochastic setting of the fP and non-ideal sAIF
controllers in Fig. [6fa), where the expressed repressor
Z, is identical for both controllers. This practical scenario
focuses on the design question: given a shared repres-
sor which dilutes at a rate ¢, is it better to reduce noise
with or without sequestration?

The simulation study in Fig. [f(e) demonstrates that in
this practical scenario, the non-ideal sAlF controller con-
sistently performs as well as or better than the fP con-
troller in reducing stationary noise. Using the same reg-
ulated network as in Fig. [6[b), we vary y, 6, and 7 for
the non-ideal sAIF controller and 6, for the fP controller

across different values of 5. The CV and expectation
are computed and plotted in 3D, along with slices for
§ € {1072,10~t}. The results clearly show that for any
E[X:] and 6, CV[XJSNF < CV[Xl]fP. This conclusion
holds also for more complicated regulated networks as
demonstrated in the numerical simulations of Sl Fig.

Motivated by the outcomes of our stochastic simula-
tions, we once again apply the LNA technique to obtain
analytical expressions for the CV in the case of a birth-
death process as detailed in S| Section Through
this analysis, we obtain that for a fixed desired setpoint

E[X:] = r, we have ac;[])z]‘ <0 This aligns with
_—

the simulation results, showing that as we transition from
the filtered P controller (n = 0) to the non-ideal sAIF con-
troller (n > 0) at the same setpoint, the CV decreases.

Genetic Implementation

In this section, we build and test the sAIF and filtered
proportional controllers in E. coli. To do so, we leverage
the flexibility offered by inteins in building genetic control
systems=®.

The genetic circuits used in the experiments are
shown in Fig. [7(a). Each circuit consists of three genes
distributed across three plasmids: Genes 1 and 2 form
the controller components, while Gene 3 represents the
regulated process. For clarity, dummy plasmids—used
to ensure similar plasmid burden across circuits but
which do not influence the regulated output—are not
shown in Fig.[7[a), but are fully detailed in Sl Fig/S9|a).
The configuration of Genes 1 and 2 determines the
type of controller: three open-loop circuits are shown on
the left, filtered-proportional control in the center, and
sAIF control on the right. These circuits were care-
fully designed to minimize differences in genetic com-
ponents across configurations, enabling a fair compari-
son—particularly in relation to extrinsic noise, which is
not accounted for in the theoretical analysis. A more
detailed discussion of extrinsic noise is provided in the
following section.

We begin by introducing the open-loop systems which
are available in three configurations. Open Loop 1 (OL 1)
serves as the minimal non-actuated configuration. Gene
3—encoding the E. coli transcription factor AraC fused
to the red fluorescent protein mScarlet-l (denoted as
the regulated output X4)—is driven by a constitutive pro-
moter, with no interaction from controller components.
Open Loop 2 (OL 2) introduces the actuator Z,, encoded
by Gene 2, which resides on plasmid 2. This gene is
driven by a constitutive promoter and encodes a Tetracy-
cline Repressor (TetR) protein with a split intein Int in-
serted into its dimerization domain. Gene 3 is driven by
the Pyer promoter, which is repressed by TetR and can
be chemically induced using anhydrotetracycline (aTc).
Open Loop 3 (OL 3) builds on OL 2 by introducing Gene
1 on plasmid 1, which encodes a different split intein,
IntN. This enables intein-splicing between Z; (IntN) and
Z, (Int®), thereby sequestering TetR’s repressive func-
tion and modulating the regulation of Xy. Like OL 2,
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Figure 7: Genetic implementation and experimental validation of intein-based feedback controllers in Escherichia coli. (a) Schematic diagrams of three Open Loop
configurations, Filtered Proportional (fP) Control, and sensor-based Antithetic Integral Feedback (sAIF) Control circuits. The controllers consist of Gene 1 and Gene 2,
which actuate the regulated process, represented by Gene 3, via the TetR protein which represses the Prer promoter. Gene 3 expresses the output of interest represented
by AraC fused to mScarlet-l, serving as a fluorescent reporter. Each gene is cloned on a separate plasmid. Note that anhydrotetracycline (aTc) serves as an external
perturbation in these experiments. (b) Time-course experiments displaying the dynamic response of the output to a disturbance induced by aTc at 1 hour, with 0.5%
arabinose present to enable feedback in closed-loop configurations. The blue and red curves represent the mean response of three biological replicates (depicted by the
colored dots at 30-minute intervals) for undisturbed and disturbed conditions, respectively. The shaded areas around the curves indicate the standard deviation from the
mean of these triplicates. It is important to note that the different co Iﬂﬂauons were deliberately chosen to ensure that the undisturbed responses would have similar levels,
all measured in Molecules of Equivalent Fluorochrome (MEF) units See S| Fig.|S10|for more comparisons at different steady-state levels. All circuits are observed to
reach a steady state, with the sAIF controller demonstratmg an exceptionally small steady-state error and exhibiting favorable dynamic behavior. (c) Bar graphs showing
disturbance rejection capabilities of each circuit, across a wide range of setpoints, with the steady-state output levels normalized to the steady-state undisturbed levels
and indicated by different arabinose concentrations. Output levels, based on three biological replicate measurements, are ordered by increasing mean values. The color
shade of the bars (light/dark) indicates the expression strength of Gene 2 (weak/strong). Error bars reflect the standard deviations from the triplicate data. The displayed
results demonstrate the varied responses to disturbance: significant deviations in open-loop circuits, a moderate reduction in the disturbance effect with the fP controller,
and a near-complete eradication of disturbance in the sAIF controller circuit. The non-normalized data can be found in Sl Fig. - d) Simulation results incorporating
both intrinsic and extrinsic noise. This panel parallels Fig. E[e now including extrinsic noise from plasmid copy number variability. Results for the sAIF and fP controllers
are shown alongside the three open-loop configurations. See S| Fig.@for more details. (e) Noise properties in an sAIF controller: The histograms in the inset display
raw data for both the autofluorescence of cells and the output fluorescence for one instance of each closed-loop circuit and two open loop configurations, pointed out with
dashed circles, all with matched means. Using tools developed in, the undisturbed steady-state data from our circuits, shown in panel (c), as well as undisturbed OL
1 data, have been processed to remove debris, autofluorescence and outliers (see Methods). This leads to the scatter plot, which correlates the mean output expression
level with the coefficient of variation (CV) to compare the noise properties of the different control circuits. Three biological replicates are plotted, each circle representing
one biological replicate.

Gene 3 is driven by the Prgr promoter and responds driving Gene 2 is varied between weak and strong ver-
to aTc induction. In both OL 2 and OL 3, the promoter sions, enabling tunable output levels. Note that OL 2
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with a strong promoter yields the lowest X; expression
due to stronger repression, while OL 3 with a weak pro-
moter achieves the highest expression—benefiting from
both reduced repression and active sequestration. In all
open-loop configurations, there is no feedback from X
to the controller. The inducer aTc is reserved in these
experiments for introducing external disturbances to as-
sess the disturbance rejection capabilities of the various
control architectures.

Next, we introduce the filtered-proportional controller
circuit, a design that is essentially achieved by a slight
modification of the OL 2 configuration. The key adjust-
ment involves substituting the constitutive promoter that
drives Gene 2 with the Paga promoter. This promoter
is activated by the AraC protein and can be induced by
arabinose. This slight alteration establishes a feedback
mechanism by incorporating a sensing reaction which
monitors the level of the regulated output X; and pro-
vides a negative feedback response. Note that arabi-
nose is reserved for tuning the setpoint (steady-state
level of the regulated output X4) — more arabinose yields
a lower setpoint, since arabinose plays a role similar to ¢
in Fig.[2(c). Similar to the setup in the open-loop configu-
rations, the expression strength of Gene 2 is available in
two levels: strong and weak. However, in contrast to the
open-loop configuration, here, the variation in expression
strength is achieved via ribozymes (see Methods). Fi-
nally, we present the sAIF controller circuit. This design
is, once again, derived from a minor, but essential, mod-
ification to the filtered-proportional controller circuit. This
primary change introduces Gene 1, as in OL 3, thus en-
abling the intein splicing reaction in the feedback loop
which lies at the heart of the sAIF topology depicted in
Fig. [3(a).

We close this section by pointing out that we did not
construct an intein-based rAIF controller for direct com-
parison in this study. Experimental comparison between
rAlF and sAIF circuits is nontrivial, as they rely on dif-
ferent actuator parts. In contrast, the sAIF and filtered
proportional controllers share the same actuator, allow-
ing for a more direct comparison.

Experimental Assessment of the Genetic Controllers

After constructing the genetic circuits, we evaluated their
performance, focusing on their temporal response, their
ability to reject disturbances and their noise properties.
Fig. [7{b) shows the results of time-course experiments
that examined the transient responses of the circuits to
the addition of 0.5 ng/mL of aTc as an external dis-
turbance at time ¢t = 1h. In the experiments involv-
ing closed-loop configurations, 0.5% arabinose was in-
troduced to activate the sensing mechanisms and to
adjust the setpoint to levels comparable to those ob-
served in the open-loop configuration. It was observed
that all circuits reached a steady state within a 6-hour
period. As expected, the open-loop circuits demon-
strated a significant deviation from its undisturbed state.
The filtered-proportional controller circuit was more ef-
fective in mitigating the disturbance impact compared to

the open-loop setup, though it still exhibited a residual
steady-state error. The sAIF controller circuit, however,
was notably successful in almost completely rejecting
the disturbance, thereby achieving RPA. Indeed, the re-
sponses with and without disturbance settle to levels in-
distinguishable within the precision of triplicate measure-
ments.

To further explore disturbance rejection across various
setpoints, we introduced a range of arabinose concentra-
tions (ranging from 0.2 — 2%) and recorded the steady-
state output levels with and without the aTc disturbance.
These findings, depicted in the bar graphs of Fig. [7|c),
are normalized to their respective undisturbed states and
are organized by ascending output levels on the x-axis.
Unnormalized plots are provided in Sl Fig. The
results reinforced our expectations: the open-loop cir-
cuits failed to counteract the disturbance, showing large
steady-state errors. In contrast, the filtered-proportional
controller reduced the disturbance’s impact to an aver-
age steady-state error of 19%, and the sAIF controller
excelled by nearly eradicating the disturbance, leading to
a minimal steady-state error of just 2%. This insignificant
steady-state error is within the error bars of the biologi-
cal triplicates. Interestingly, the impact of the aTc distur-
bance was more pronounced at lower setpoints (which
correspond to higher arabinose levels), suggesting a di-
minished sensitivity to this disturbance at lower TetR con-
centrations.

Next, we examine the experimental noise properties
of the various built circuits. However, the experimen-
tal setup cannot be directly compared to the theoret-
ical analysis in Fig. [6fe), as the experiments include
both intrinsic and extrinsic noise, whereas the theoreti-
cal analysis considers only intrinsic noise. As such, we
performed additional simulations incorporating extrinsic
noise, specifically due to variability in plasmid copy num-
bers, using data from“9 that match the plasmid origins
of replication we use. Since circuits with more plasmids
introduce more extrinsic noise, this factor is critical for a
fair comparison. We simulated and experimentally mea-
sured all the circuits in Fig[7(a). Simulation details, com-
bining both intrinsic and extrinsic noise, are provided in
Sl Fig. [S9] and the results are summarized in Fig[7|d),
where the CV is plotted against the mean and the dilu-
tion rate 4 as in Fig. [6[e). With both intrinsic and extrin-
sic noise present, sAIF does not reduce noise relative
to OL 1 (no actuator). This contrasts with the idealized
intrinsic-only setting (Fig. [5), where sAIF can attenuate
noise relative to OL1. When extrinsic noise is included,
simulations show at most a very narrow, marginal atten-
uation window—too small to be reliably observed exper-
imentally. This limitation arises because it is designed
to involve three different plasmids compared to only one
plasmid in the OL 1 configuration, amplifying extrinsic
variability. However, when compared to OL 2—which
uses only one additional plasmid to house the actua-
tor gene expressing Zo—the sAIF and filtered propor-
tional controllers do reduce total noise. This indicates
that, despite housing the genes on more plasmids yield-
ing higher extrinsic noise, the sAIF controller remains
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effective at attenuating noise relative to more compara-
ble open-loop designs (OL 2 and 3). The OL 2 scenario
is particularly relevant in practice, as regulating the pro-
cess through an external actuator component (e.g. tran-
scription factor or chemical inducer) is often necessary
and offers greater flexibility in both design and tuning,
compared to modifying the promoter that directly drives
the process. The corresponding experimental results are
presented in Fig. [7(e). Note that the histograms shown
in the inset display the distributions for a single instance
of each circuit from the scatter plot pointed out in dashed
circles, prior to the processing that removes autofluores-
cence and outliers. This analysis demonstrated that the
sAIF controller not only ensures RPA but also decreases
noise levels below those found in the open-loop config-
uration with comparable number of plasmids, i.e. OL 2
and 3, particularly at lower setpoints. Additionally, the
data reveal that the noise-reducing capability of the sAIF
controller in this example is comparable to that of the
filtered-proportional controller.

Lastly, in Sl Fig. we include previously published
data from Aoki et al.?2, in which an rAIF controller was
implemented in E. coli using Sigma/anti-Sigma seques-
tration and successfully achieved RPA at the population
level. However, unlike the sAIF controller, the rAlF re-
sulted in a more than fourfold increase in CV relative to
its open-loop counterpart. It is important to note that this
open-loop circuit also included the controller gene (sim-
ilar to OL 2), meaning the comparison was not made
against a minimal open-loop system without actuator
species (i.e. OL 1). Additionally, due to significant dif-
ferences in experimental setups and genetic parts, our
experiment does not attempt a direct comparison be-
tween rAlF and sAIF noise levels. Rather, both stud-
ies perform relative comparisons within their respective
contexts. In our case, the sAIF controller reduces noise
at low expression level where noise is prominent com-
pared to its corresponding actuated open-loop configu-
rations (OL 2 and OL 3 in Fig. [7(a)) - a feature that the
rAlF controller in?? did not achieve. However, in this work
we have not disentangled topology from part-specific ef-
fects. Staging a fair comparison between sAIF and rAIF
that takes into account the different parts (such as split
inteins and sigma/anti-sigma pairs) and their associated
extrinsic noise remains an important future direction.

Discussion

Achieving homeostasis is crucial in regulating cellular
processes in living cells, which are inherently noisy and
uncertain. While RPA is an important property that en-
dows the system with homeostasis, it is often not suffi-
cient for achieving high dynamic performance. Further-
more, achieving RPA at the population level may come at
the cost of high cell-to-cell variability?? or elevated ener-
getic burden2. Therefore, it is vital to develop biomolec-
ular controllers that can deliver both RPA and high per-
formance, taking into account the inherent variability of
living cells. While integral controllers are usually the
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suitable choice to achieve RPA at the population level,
proportional controllers are often added on top of the
integrators to enhance the dynamic performance and
reduce noise or cell-to-cell variability®234, In previous
works, such addition was realized by adding extra cir-
cuitry which could be biologically demanding, although
unavoidable in certain scenarios. In this paper, we have
shown that a slight variant of the standard rAIF controller
(see the sAIF topology in Fig. [3(a)) gives rise to a (fil-
tered) PI controller without adding the extra circuitry. We
also demonstrated analytically and through simulations
that this variant indeed brings in the benefits of the pro-
portional controller while maintaining the RPA property
offered by the integrator.

The sAIF controller was first introduced in4? Fig. S1
as one of several realizations of AIF control. More re-
cently, a stochastic analysis employing linear noise ap-
proximation was conducted in4“ to show that this variant
is capable of reducing noise when controlling a birth-
death process. Our study reveals that it is precisely
the “hidden” proportional component which is responsi-
ble for this noise reduction, and not the integrator. This
is demonstrated in Fig. | when regulating not only a
birth-death process but also a gene expression process
with and without protein maturation (see Sl Fig. [S5).
We also demonstrate analytically and through simula-
tions that the “hidden” proportional component not only
reduces noise, but also enhances the dynamic perfor-
mance. Interestingly, this seemingly minor, but subtle,
alteration in the choice of the actuating species yields a
different controller architecture which tangibly offers bet-
ter responses. The intuition behind this improvement lies
in the fact that the altered choice of actuating species
cascades both a filtered proportional controller and an
integral controller, resulting in the best of both worlds.
This finding has practical implications as it offers a mini-
mal design for biomolecular Pl controllers which is easier
to build. Furthermore, this minimal design serves as a
fundamental principle for constructing negative feedback
controllers using a given repressor. As demonstrated
in Theorem (1| and supported by theoretical and compu-
tational analysis, incorporating sequestration alongside
the repressor consistently improves adaptation compro-
mising noise attenuation compared to using the repres-
sor alone.

Leveraging the simple design, we have genetically
engineered the sAIF controller in E. coli using in-
teins. We used our previously reported TetR-IntC(Gp41-
1)/IntN(Gp41-1) pair<® for all gene circuits, with no de-
tectable off-target activity. Although we did not perform
an extensive characterization of Gp41-1 in this study, this
is a widely used and characterized split intein, due to
its small size, rapid splicing kinetics, and reliable per-
formance®%™4. As an added benefit, Gp41-1 is part of
a library of orthogonal split inteins validated in vivo in
E. coli®3, supporting its potential for multiplexing, scale
up, and incorporation into more complex circuits. Our
experimental results successfully demonstrated the con-
troller’s capabilities in achieving RPA, favorable transient
dynamics and noise reduction. Indeed, our experimen-
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tal findings confirm that the sAIF controller is capable
of reducing the noise levels below those observed in a
parts-matched open-loop configuration where the net-
work is regulated by an actuator. The reduction is clearly
observed experimentally at low expression levels where
noise is prominent.

Although the previously tested rAIF controller@? is not
directly comparable to our sAIF controller due to differ-
ences in biological parts, it is worth noting that it exhib-
ited a more than four-fold increase in noise relative to its
own open-loop configuration, which also involved regu-
lation by an actuator species. While not directly compa-
rable, the results are nonetheless informative in assess-
ing the potential of the sAIF architecture. A direct com-
parison between rAlF and sAIF using matched biological
parts remains an important direction for future work.

Our theoretical analysis focused on intrinsic noise,
which, while present in our experimental data, is inter-
twined with extrinsic noise arising from our multi-plasmid
design. To account for this additional noise source, we
conducted a comprehensive simulation study incorporat-
ing intrinsic and extrinsic noise in the form of plasmid
copy-number variability (see Fig.[7[d)). The experimental
results show that at low expression levels—where noise
is most pronounced—the sAIF controller exhibits lower
total noise than open-loop circuits that include the actu-
ator (OL2 and OL3), consistent with the simulation re-
sults. Two key future directions emerge from this work:
(1) designing circuits with measurement modalities capa-
ble of disentangling intrinsic and extrinsic noise to study
them separately, and (2) embedding controller genes on
the same plasmid to reduce variability from plasmid copy
number—while carefully avoiding gene interference.

Our theoretical analysis has demonstrated that the
choice of actuation mechanisms plays a critical role in fa-
cilitating these enhancements. Specifically, degradation-
based actuation mechanisms exhibited the best perfor-
mance in shaping the transient dynamics. Although our
genetic implementation, which utilizes TetR as a repres-
sor for actuation, has already shown significant improve-
ments, we anticipate that alternative designs incorpo-
rating degradation could unlock even greater enhance-
ments. Exploring these possibilities remains an avenue
for future research. Additionally, future work involves
testing our controllers in more complex regulatory sys-
tems, where unintended interactions and cellular bur-
den may become significant. Although we observed no
significant signs of cellular burden—evidenced by the
monotonic steady-state responses in Sl Fig. and
unchanged cell densities indicating no impact on growth
rate—burden may still arise when regulating more com-
plex networks. It would also be valuable to experimen-
tally investigate the effects of severe disturbances that
could induce integral windup, and to build genetic cir-
cuits capable of preventing or mitigating such effects, as
proposed in4!,

The first genetically engineered PI controllers in mam-
malian cells, utilizing sense/anti-sense RNAs, was re-
ported by Frei et al.?”. Our work introduces the first
successful implementation of a Pl controller in bacteria,

marking a significant milestone. Unlike the previous ap-
proach that relied on a proxy for the output molecules to
implement proportional control, our sAIF controller em-
ploys a minimal design. This design enables the re-
alization of both proportional and integral components
through a single actuation reaction, thus avoiding the
need for additional genetic parts or proxies.

Our implementation in bacteria underscores the versa-
tility of inteins as a genetic tool applicable across diverse
life forms. In fact, the simplicity in the design, coupled
with the exquisite role of inteins in bridging theoretical
constructs and practical implementations, sets the stage
for the promising deployment of such controllers across
diverse domains intersecting with synthetic biology. This
holds the potential for significant advancements in sec-
tors where precise and swift biomolecular regulation is
essential, including biotechnology, metabolic engineer-
ing, and cell therapy, among others.
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STAR METHODS

Growth Conditions

Escherichia coli cells were grown in M9 medium sup-
plemented with 0.2% casamino acids, 0.4% glucose,
0.001% thiamine, 0.00006% ferric citrate, 0.1 mM cal-
cium chloride, 1 mM magnesium sulfate, and 20 pug/mL
uracil (Sigma-Aldrich Chemie GmbH), and incubated in
an environmental shaker (New Brunswick) at 37°C with
shaking at 230 rpm. Antibiotics (Sigma-Aldrich Chemie
GmbH) were used at the following concentrations: car-
benicillin (carb), 100 pg/mL; spectinomycin (spec), 100
pg/mL; chloramphenicol (cam), 34 pg/mL.

E. coli Host Strain

Host strain SKA360 (MG1655 AaraCBAD AlaclZYA
AaraE AaraFGH attB::lacYA177C ArhaSRT
ArhaBADM) is a precursor strain to SKA703 con-
structed as previously described in¢2.

E. coli Plasmids

All plasmids (Table [ST) were constructed from a custom-
made library of parts with optimized overhangs®® us-
ing standard Golden-Gate assembly methods and mod-
ular cloning (MoClo)®® with restriction enzymes Bsal-
HF v2 and Bbsl-HF (New England Biolabs). Cir-
cuit modules were split between three different plas-
mids. The Gene 1 plasmids contain either intC(gp41-
1) or intN(gp41-1)2%°0 under a Bba.J23119 consti-
tutive promoter and weak BO0033 ribosomal binding
site (RBS) from the Registry of Standard Biological
Parts on a medium copy plasmid with p15A origin
of replication and aminoglycoside adenylyltransferase
(spec”) gene. The Gene 2 TetR-IntC plasmids con-
sist of a tetR(1-183)::intC(gp41-1)::tetR(184-212) fu-
sion<® under the control of either a modified P,z
promoter?? and weak B0033 RBS or AraJ-B0033m ri-
bozyme/RBS (for the weak and strong filtered propor-
tional and sAIF circuits, respectively)>” or a Bba_J23111
or Bba_J23119 constitutive promoter from the Registry
of Standard Biological Parts (for the weak and strong
open-loop circuits, respectively) and weak B0033 RBS
on a low copy plasmid with pSC101 origin of replica-
tion and chloramphenicol-acyltransferanse (cam®) gene.
The regulated Gene 3 output plasmid consists of a
V5::araC::mScarlet-I fusion?2=8 under the control of a
Prieto—1 promoter®® and weak B0033 RBS on a high
copy plasmid with ColE1 origin of replication and beta-
lactamase (carbR) gene. Additionally, a set of unregu-
lated Gene 3 output plasmids with V5::araC::mScarlet-
/ under a weak B0033 RBS and constitutive promoters
Bba_J23114, Bba_J23106, Bba_J23102, Bba_J23111,
Bba_J23119 from the Registry of Standard Biological
Parts as well as J23101*, a modified weaker variant
of Bba_J23101*%% were constructed using the same
backbone as the regulated Gene 3 output plasmid.
Plasmids were transformed into E. coli host strain
SKA360 for testing as previously described®’. The
plasmid combinations used for each circuit are listed
in Table Plasmid sequences are available at the
following Github repository https://github.com/Maurice-
Filo/Sensor-Based-Biomolecular-Integral-Controllers.

E. coli Steady-State Experiments

200 pl aliquots of M9 medium in 96-well flat-bottom
plates (Greiner) with appropriate antibiotics were inoc-
ulated with the circuit strains from glycerol freeze stocks.
The plates were covered with BreathSeal film (Greiner)
and a plastic lid (Greiner) and were incubated overnight
at 37°C with shaking to stationary phase. In the morn-
ing, cultures were diluted 1:1,200,000 in fresh 200 pl
aliquots of M9 medium in 96-well flat-bottom plates con-
taining arabinose (Sigma-Aldrich) at final concentrations
of 0%, 0.2%, 0.35%, 0.5%, 0.75%, 1%, 1.5%, or 2% with
or without 0.5 ng/mL anhydrotetracycline (aTc, Chemie
Brunschwig). Plates were covered with BreathSeal film
and plastic lids and incubated for six hours at 37°C with
shaking. After six hours of shaking, all cultures were in
exponential phase (optical density at 600 nm (OD) less
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than 0.1). As previously described, cell growth, tran-
scription, and translation were stopped with a rifampicin-
tetracycline solution and the mScarlet-l was matured for
three hours at 37°C®2. Matured samples were stored at
4°C overnight and samples were measured by flow cy-
tometry on a CytoFlex S (Beckman Coulter) the next day
with a minimum of 50,000 events recorded. As a no-
fluorescence control, host strain SKA360 was cultured,
processed, and measured in parallel with the other sam-
ples. Rainbow calibration beads (Spherotech, RCP-30-
5A) were also measured in the same run as each exper-
iment with a minimum of 50,000 events collected.

Open loop 2 (OL 2), open loop 3 (OL 3), filtered
proportional (fP), and sensor-based Antithetic Integral
Feedback (sAlF) circuits were tested together in parallel,
along with a no-fluorescence control (empty host strain
SKA360) and rainbow calibration beads (Spherotech,
RCP-30-5A), to ensure that all circuits were assayed un-
der identical conditions and could be directly compared
within each experiment. Single-plasmid experiments us-
ing open loop 1 (OL 1) were performed separately in
M9 medium without arabinose or aTc along with the no-
fluorescence control and rainbow calibration beads. All
experiments were performed on three independent days
(biological replicates). Each OL 2, OL 3, fP, and sAIF
circuit experiment included one sample per strain and
condition, whereas OL 1 experiments were conducted
with three technical replicates. Corresponding data are
shown in Figures 7(c) and 7(e).

E. coli Dynamic Experiments

For this experiment, it was important that the cells were
kept in exponential phase. A 3 mL aliquot of M9 medium
containing appropriate antibiotics and 0.5% arabinose
was inoculated with cells from glycerol freeze stocks at
a low OD so that after approximately 10 hours of incu-
bation overnight at 37°C and 230 rpms, cultures were at
an OD between 0.01 and 0.03. The exponential phase
culture was then used to start pseudo-time course ex-
periments. Briefly, the time courses were split into two
phases. The first phase was one hour of growth in 0.5%
arabinose to ensure that the cultures were at steady-
state and to assess the output level without any distur-
bance. The second phase was six additional hours of
growth in 0.5% arabinose with or without a constant 0.5
ng/mL aTc disturbance. Cultures for time points 0-1 h
were set up simultaneously and sampled every 30 min-
utes. After 1 h of growth, cultures for time points 1.5-7
h (with and without aTc) were set up simultaneously and
sampled every 30 minutes. After collecting all the time
points, mScarlet-l was matured for all the samples at the
same time and matured samples were measured at the
same time on the flow cytometer.

Dilution strategy for time points 0 -1h

The overnight exponential culture was diluted to an OD
of 0.006 in 1.2 ml M9-0.5% arabinose. This initial 0.006
OD dilution mix was used to inoculate 200 pl of M9-
0.5% arabinose in column 2 of a 96-well flat-bottom

plate (Greiner) with one row per circuit strain (Plate
1). The remaining dilution mix was further diluted 2.3-
fold in M9-0.5% arabinose and 200 pl aliquots of cells
were aliquoted in columns 3-5 of the same 96-well plate.
Empty wells were filled with 200 yul PBS and the plate
was covered with a BreathSeal film and plastic lid and
incubated at 37°C with shaking.

Dilution strategy for time points 1-7h

For the no disturbance (0 ng/mL aTc) condition, 96-well
Plates 2 and 3 were prepared by aliquoting 200 pl M9-
0.5% arabinose into Plate 2 columns 2-11 and Plate 3
columns 2-3. For the disturbance (0.5 ng/mL aTc) con-
ditions, Plates 4 and 5 were prepared by aliquoting 200
pl M9-0.5% arabinose-0.9375 ng/ml aTc into Plate 4 col-
umn 2 and 200 pl M9-0.5% arabinose-0.5 ng/ml aTc into
Plate 4 columns 3-11 and Plate 5 columns 2-3. At time 1
h, Plate 1 columns 4 and 5 were combined together and
used to inoculate the 200 pl aliquots of media in Plate 2
and Plate 4 column 2 with 175 pl culture (2.3-fold dilu-
tion). The wells were pipetted up and down to mix and
175 ul was transferred to the 200 pl of media in column
3 of the same plate. This serial dilution procedure was
continued for the remaining columns of Plates 2 and 4.
175 pl of diluted culture in column 11 of Plates 2 and 4
were then used to continue the serial dilutions into Plates
3 and 5 column 2, respectively.

Sample collection, mScarlet-l maturation and mea-
surement

The experimental protocol was set up so that each col-
umn was one 30 minute time point. For each time point,
100 pl of culture was collected and mixed with 100 pl
rifampicin-tetracycline solution in 96-well plates on ice to
stop cell growth, transcription, and translation®. Plates
were kept on ice in the dark until all time points were
sampled. After sampling the last point, the plates were
kept on ice for one hour before covering with a Breath-
Seal film and maturing the mScarlet-1 for three hours at
37°C. Matured samples were stored at 4°C overnight
and samples were measured on a CytoFlex S the next
day with a minimum of 20,000 events recorded. Time O h
was collected from leftover dilution mix used to inoculate
Plate 1. Time 0.5 h was from Plate 1 column 2. Time
1h was from Plate 1 column 3. Time 1.5-6 h was from
Plates 2 and 4 starting with column 2 and ending with
column 11 (one column per 30 minutes). Time 6.5-7 h
was from Plates 3 and 5 starting with column 2 and end-
ing with column 3 (one column per 30 minutes).As a no-
fluorescence control, host strain SKA360 was cultured,
processed, and measured at time 7h in parallel with the
other samples. Rainbow calibration beads (Spherotech,
RCP-30-5A) were also measured in the same run as
each experiment with a minimum of 50,000 events col-
lected.
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Flow Cytometry

All samples were measured on a CytoFlex S flow cy-
tometer (Beckman Coulter) equipped with a 96-well
plate sample loader using CytExpert version 2.4.0.28.
mScarlet-l was measured with a 561 nm lasesr and
610/20 bandpass filter (ECD-H); the gain settings were
as follows: forward scatter 100, side scatter 100,
mScarlet-l 1000. Thresholds of 2,500 FSC-H and 1,000
SSC-H were used for all samples.

Data Analysis

All flow cytometry files were processed using the python
package FlowCal as previously described*”. Briefly,
events were gated by SSC-H and FSC-H using a gate
fraction of 0.3. mScarlet-l fluorescence (ECD-H) was
then converted to Molecules of Equivalent Fluorochrome
(MEF) using Rainbow calibration bead (Spherotech,
RCP30-5A) measurements performed on the same day
as each experiment.

The arithmetic mean and variance of the cell popula-
tions was calculated using the Python package NoiseC-
ontrol as previously described“®.

Briefly, the python script first trims the FlowCal-
processed data to remove a small number of outliers.
Trimming is based on a kernel density estimate of the
log-fluorescence distribution, used to identify the fluo-
rescence range around the median where the density
exceeds a 0.5% threshold. Then, the script subtracts
autofluorescence, obtained from the untransformed host
strain SKA360 measure on the same day as each exper-
iment, as follows

E[Y] = E[Yiot] — E[Yaf]

\/OVIYial B[Yio* — CV[Yarl” E[Ya)”
CVirl= ElYior] — E[Yar ’

where Yy is the autofluorescence and Y is the total flu-
orescence. We also analyzed our data using a different
pipeline® and the conclusions remained unchanged.

All experimental data was plotted in Python while com-
putational simulations were carried out and plotted in
MATLAB.

Code Availability

The MATLAB and Python codes generated in this
study can be found at the following Github repos-
itory https://github.com/Maurice-Filo/Sensor-Based-
Biomolecular-Integral-Controllers.
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S1 Transfer Functions

Let (z,Z1,2z2) denote the closed-loop fixed point when operating at a nominal exogenous input g. Furthermore, let
(Z, 21, Z2) denote the perturbation from the closed-loop fixed point due to a disturbance or a perturbation i of the
exogenous input from its nominal value. That is, we have

p(t) =+ a(t); x(t) = T + Z(t); zi(t) = z; + Z;(t), (S1)

for i = 1,2. Let , 21, 29, i and 4 respectively denote the Laplace transforms of Z, 21, 2z, t and u. For the actuation
function h, define the partial derivatives as 0h(Zz1, Z2, T1; T1) e [01 —0y —0p, O’w} with o1,09,07 > 0, and let ¢e;
be a vector of an appropriate size whose entries are all zeros except the i*P-entry being 1.

S1.1 Proportional & Feedforward Controllers

Consider the following closed-loop dynamics
& = f(x) + ue;
Hh=pu—02z (52)
%o = 0xp — 029,

where the control action is given as u = h(z1, 22, 2; 1) to encompass the two basic controller motifs listed in Fig. 2(c)
and an additional controller where Xy, directly actuates Xy since now h is allowed to, more generally, depend on xp,.
The approximated perturbation dynamics are thus given by the linearization that can be written separately for the
process P and the controller C as

P i= [0f(Z) + ozere] | T + dey
Ap
o -1 Sl
X I
U= [01 —02] {:;] + [—UL 0} ﬁf] ,
Ce D.

where, for convenience and with a slight abuse of notation, o, is absorbed in the dynamics of the process and so @
does not involve Z;. Taking the Laplace transforms on both sides of the equalities in Equation (S3) and recalling that
the transfer matrix of the controller is C.(sI — A.)"!B. + D, yields the following transfer functions

P @p(s) = P(s)u(s) £ e (sI — Ap) terii(s)

wi wo (S4)
i(s) = Kp—"—ji(s) — | K Kp|#
C: als) FH%M(S) P, TR Zr(s),
where 0
KFé%v Kpé%, K/Péo—[m woéév o‘)(/]é(s/‘

As a result, the two cases presented in Fig. 2(c) can be directly obtained from Equation (S4) by choosing the control
action u = h(z1, 29, x; 1) appropriately which leads to setting a subset of the partial derivatives o1, 09,0 and o, to
Z€ero.

S1.2 Proportional-Integral Controllers
Consider the following closed-loop dynamics
&= f(z) + ue

21 =p—nz122 (S5)
2o = Oz — n2129,

where the control action is given as u = h(z1, 22,2 1; 1) to encompass the two cases presented in Fig. 3(a) and (b),
and an additional controller where Xy, directly actuates Xy since now h is allowed to, more generally, depend on xp.



The approximated perturbation dynamics are thus given by the linearization that can be written separately for the
process P and the controller C as

P i= [0f(Z) + ozere] |  + ey
Ap
e B]=a SallBl b ol [H
Zo —nzZy —Nz1| |Z2 0 0] | i (S6)
~————— ——
A, Be.
- Z1 Ty
u = [0'1 —0'2} |:~:| +[—0L 0] |:~:|,
—— 2 ——— M
C. D,

where, for convenience and with a slight abuse of notation, o, is absorbed in the dynamics of the process and so @
does not involve Z;. Taking the Laplace transforms on both sides of the equalities in Equation (S6) and recalling that
the transfer matrix of the controller is C.(sI — AC)’lBC + D, yields the following transfer functions

P @p(s) = P(s)u(s) = e} (sI — A,) " erii(s)

. Kr . . . wo /A (S7)
C: = |— K — KpK - K
(s) - é(s) + Kpiu(s) — KpKsir(s) ST on p2L(s),
where 51 4 0o
Kléw7 KFé%a K}éab
Z1+ Zo n(Z1 + Z2) (38)
Kpa_ 22 wo 2 (% + 7)), Ks20.

n(z1 + z2)’
As a result, the two cases presented in Fig. 3 can be directly obtained from Equation (S7) by choosing the control
action u = h(z1, 22, ;1) appropriately which leads to setting a subset of the partial derivatives o1, 09,0y, and o, to
Z€ro.

S2 Mappings between Filtered PI and Biomolecular Parameters

Throughout the subsequent analysis, we will make an assumption about the process. Let F; (¢ = 1,2, ..., L) denote the
steady-state maps of the process, that is, if u is a constant then with reference to the first equation in Equation (S5),

we write
f(z)+ue; =0 = x; = Fi(u). (S9)

Assumption 1. Assume that for the desired steady-state output Ty = r, there exists a feasible supporting input u and
steady-state concentrations of the process species T;,i = 1,--- , L — 1, that achieve the desired output. More precisely,
forr>0,3u € U and z; > 0 such that F(a) = r and T; = F;(a), where U is the set of feasible inputs.

Remark 1. The set of feasible inputs depends on the type of actuation. For instance if the actuation is carried out
wvia non-saturating production only, then U = R ; whereas if it is carried out via non-saturating degradation only, then
U =R_. If both non-saturating production and degradation actuations are allowed then, U = R.

Remark 2. We emphasize that this assumption does not depend on the type of controller used. Instead, it only
depends on the process and the particular choice of actuated input species and actuation mechanism. This assumption
has to be satisfied, otherwise, the actuation is simply inadequate and there is no controller that can achieve the desired
output without changing the choice of the actuated input species and/or actuation mechanism.

The set of formulas in Equation (S8) provides a way to calculate the block diagram parameters (see Fig. 3(b))
from the biomolecular parameters. To go in the opposite direction, one can solve Equation (S8) for the biomolecular
parameters to obtain
1 (K1 —woKp)(woKp — Ki) |
1 (Kp — KF)? ’

!
o1 =woKp; 02 =woKp; o= Kp;

’r] =
(S10)

h’(217227EL;j1) = 1_111

where z; = u%, Zo = p% and @ is fixed (it depends on the process and setpoint only). Of course whether

this inversion is doable or not depends on the number of degrees of freedom that shape the actuation function h.



Our goal is to derive the mappings between the Filtered PI parameters (Kp, Kj,wp) and the various biomolecular
parameters (7, ...). We first start with the analysis problem: given the biomolecular parameters, what are the PI gains
and cutoff frequency? Then we move to the design problem: what are the biomolecular parameters that achieve some
desired PI gains and cutoff frequency? We treat the analysis and design problems for the rAIF controller and the sATF
controller with two biologically-relevant functional forms of h implementing the two negative actuation mechanisms
(production and removal) shown in Fig. 2(b).

S2.1 Mappings for rAIF Controllers

For rAIF with h(z1,22,2r;%1) = k21, we have Kp = K}, = 0 and for a fixed p and 6, the mappings back and forth
between the block diagram and biomolecular parameters are given by

.
Analysis: K;= — Zlf , wo=1n(Z1+ 22)
n (S11)
K u K
Design: B S 1—4“11,
U w2 U wo

Observe that K is left out on purpose because with this actuation function K is not a degree of freedom (unless y
or # are allowed to be tuned). Furthermore, since k has to be a nonnegative real number, then the following condition
constrains the coverage of the integral gain and cutoff frequency:
U
K] S 47(,00. (812)

=

S2.2 Mappings for sAIF Controllers

For sAIF, we have Kp = K}, = 0 since h is not a function of z;; instead it is a monotonically decreasing function of
z2. We consider actuations via repression and degradation separately.

Actuation via Repression

The actuation function h is given here as a Hill-type function with cooperativity, that is
Q
u=h(z;21) = ———— S13
( 2y 1) 1+ (22/“{)7“ ( )

where k is the dissociation constant, « is the maximal production rate and n is the Hill coefficient. The setpoint is

. _ A . . . . . . . _ .
given by Ty, = r = /6. For a given process and setpoint r, satisfying Assumption 1, the supporting input @ satisfies
Fp(u) =r and is fixed. We first treat the analysis problem, then move on to the design problem.

Analysis. The controller coordinates (Z1, Z2) of the fixed point are given by

_ 1% _ e
=7,  R=k{=
nkKk 5_1 u

Clearly, the following condition on the biomolecular parameters has to be satisified to guarantee that z;, zo > 0,

o> . (S15)

— 1 (S14)

Violating this condition causes both coordinates of the fixed point to become either negative or complex and thus
causing instability. By substituting the partial derivatives of the actuation function o3 = o7, = o, = 0 in Equation (S8),
one can write the PI gains (Kp, K) and cutoff frequency wyp in terms of the various biochemical parameters as

0'222 g9

K = K = —— = > z. .
1= L AL wo = n(Z1 + 22) (S16)

where g9 = ng‘—i (%)nil.

Design. By fixing p and r (and thus @), one can easily solve the equations given in Equation (S14) and Equation (S16)
for the biomolecular parameters «, k, and 7 in terms of the PI gains and cutoff frequency to obtain

— i ke oo 5\ oK, (S17)

_1KI< K[) _ U o 12 n ﬁwf%
— | W s o= —"7FF— —1.
1 "o

n=— K = n—
,UKP na g, K1
0" Kp



Filtered-PI Coverage. Constraining «,x and 7 to be non-negative and to satisfy condition Equation (S15) yields
the following achievable PI gains and cutoff frequency.

nu

Sr = {(KP7K1,MO) €RY : Kp <nl, K; <wkKp (1 . #KP)} . (S18)

This indicates that employing repression for negative actuation imposes an upper bound on both the proportional
gain Kp and integral gain Kj. It is worth noting that these upper bounds can be relaxed by increasing n since
S C 8™ suggesting that cooperativity enhances the coverage, thereby enabling more flexible tuning of the filtered
PI parameters. Lastly, it is important to highlight that the upper bound of K; depends not only on the process and
the setpoint via the supporting input @, but also on the proportional gain Kp and cutoff frequency wy.

Actuation via Degradation

Next, consider the case where Zs degrades the input species X;. The actuation function h is thus given by

u = h(zz;21) = o — yZ22{(21), (S19)
where &(z1) = iﬁlﬁw. The controller coordinates (Z1, Z3) of the fixed point are
. mE(E) . _a—a
21 = —F > zZ9 = — 5 820
o) EEN (520
with £(Z1) £ —%— ~ 1, by choosing x, to be small for simplicity. Note that this assumption can be easily relaxed.

T1+Ke
Calculations of the analysis problem are similar to the repression case but with o9 = v¢(Z;) = 7. The mappings from

the PI gains (Kp, K1) and the cutoff frequency wy to the biomolecular parameters are given by
1 K K woK
= (wo—’>, am Ut p——p, 7~ wKp. (S21)
wKp wWo — Ky
Constraining the biomolecular parameters to be non-negative yields the following achievable PI parameters,
Sa={(Kp,Kj,w.) €R3 : K; <woKp}. (S22)

This indicates that employing degradation for negative actuation, imposes an upper bound on the integral gain K;
only. Furthermore, this bound is less restrictive than that corresponding to the actuation via repression. In fact,
observe that for all n = 1,2, -, we have S* C S"™! C S, as visually demonstrated in SI Fig. S2. Also note that S”
converges to Sg as n — oo.

S3 Root-locus Analysis

To carry out a standard root-locus analysis, the closed-loop transfer function should be rewritten in the following form

__T(s)
(s) = T1KGG) (S23)

where K is the constant gain of interest (e.g. K; or Kp), such that KG(s) £ K % represents the loop gain, and

T(s) 2 ]g((z)) is a rational function of s which does not play a role in the closed-loop root-locus. For the rAIF topology

in Fig. 3(a) which realizes a filtered (I + FF) controller, Equation (9) can be rewritten in the form of Equation (S23)
as
szo

s(s +wo)(s +71)
The root-locus starts (at K; = 0) from the poles (0, —wp, —y1) of G(s) and ends (at K; — 00) at its zeros (s — oo
because N (s) = Kswy is a constant). As K is increased from zero, the first root-locus branch starting from the most
negative open-loop pole, — max(y1,wp), moves on the real axis toward —oo. The other two branches move toward each
other and break away from the real axis and approach two asymptotes intersecting with the real axis at —(v; +wp)/3

K:K[, G(S) =

(S24)

with angles 7/3 and —n/3. The break-away point of the root-locus branch starting from s = — min(y;,wp) and s =0
is at
T A2 _
o= VOt wé% (wo + 71)7 (S25)

and so it is easy to show that —% < s, < 0. In fact, the fastest response which can be achieved by an infinite cutoff
frequency wy is limited by a threshold dictated by %-. These results are summarized in Fig. 4 (a) of the main text.
More details are also reported in SI Fig. S3(a).



S4 Pole Placement

In this section, we derive the bounds on the achievable poles for the two negative actuation scenarios of sAIF: repression
and degradation. Placing the three poles at a single location s = —a, allows us to express (Kp, Kr,wp) in terms of
the birth-death parameter 71, the sensing gain Kg, and the placed pole —a as shown in Equation (11). Note that the
supporting input @ is calculated using the equation @ — ;7 = 0, where r £ 11/6 represents the setpoint.

S4.1 Repression
Plugging (Kp, K1,wp) in the coverage condition in Equation (S18) yields

3a? —71(3a — 1) < nm
Ks(?)a—’yl) KS

(1311’)/1
(n+1)7(3a — 1) — 3a?

0<

(526)

<3a* —71(3a— 7).

From the first inequality, we get

n—l—l—,/(n—l—l)(n—%)<a<n+1+\/(n+1)(n—%) (s2)
2 2 ’

and from the second, we get (1 < a < (3 where (3, (5 are the two positive roots of the following fourth-order polynomial
equation given by

9¢* — (8n +18)¢3 4+ (12n + 15)¢% — (6n +61)¢ + (n+ 1) = 0. (S28)

Calculating the intersection of the two inequalities yields the bounds for the achievable poles s;(n)y; < a < s, (n)1
where

n+1—y/(n+1)(n—3)
si(n) = max 5 ? ,G1
(529)
n+1+y/(n+1)(n—1)
Su(n) = min 5 i ,Ca

In the case of repression without cooperativity, it is not possible to place the three poles at a single location. However,
we can still study the dynamics by placing the poles at two different locations instead of one. To this end, assume
two poles are placed at s = —a; and one pole at s = —ay. Equating the closed-loop characteristic polynomial in this
case (s + ay)?(s + az) to the denominator of Hgatr(s) gives the expression of the PI gains (Kp, K;) and the cutoff
frequency wy in terms of the birth-death parameter «;, the sensing gain Kg and the placed pole locations —ai, —as as

a? + 2aias Y1
KP:K(2a +az—7) Ks’
s(2a1 a2 —m s
K ataz 2a; + .
= wo = z2a ags — .
T KS(2a1 +a2—71)’ 0 1 2~
Plugging (Kp, K1,wp) in the coverage condition in Equation (S18) yields
B
0< 3—2 <(n+1)m
! (S31)

nyiaiag
(n+ 1)y B1 — By

< By — B

where By = 2a1 + as — 1, By = a% + 2aiae. Rewriting a1 = b1y and as = byys, the inequalities in Equation (S31)
simplify to
(n+1)e;—Ce>0

{(02 —C1)[(n+1)Cy — Co] — nbiby >0 (832)

where C) = 2b; + by — 1, Cy = b3 + 2b1by. One can rely on graphical tools to calculate the intersection of the two
inequalities as demonstrated in SI Fig. S3(d).



S4.2 Degradation
Plugging (Kp, K1, wp) in the coverage condition in Equation (S22) yields

a® 3a® —y1(3a — 1)

—— < (3a — ,
Ks(3a—71) ( ") Kg(3a— 1)

(S33)

which simplifies to a > 4.

S5 Connections between the Deterministic & Stochastic Settings

This section delves into the connections that tie the sAIF controller to the pure integral controller on one hand, and
the filtered proportional controller on the other. Specifically, we connect their performance with respect to the gains
in the deterministic setting, and noise behavior in the stochastic setting. As a result of this analysis, we draw a
connection between deterministic gains and stochastic noise characteristics.

S5.1 Deterministic Setting

We begin by examining how the gains of the sAIF controller change while tuning the sequestration rate n. As calculated
in Equation (S7) and Equation (S16), the transfer function of the sAIF controller is given by

~ KI ~ ~ (%)
C: = |=Le(s) - K , S34
i(s) = | () — Kpin(s)| - (834)
where B 0
Ko 222 gpa 27 A (5 5.
L N L n(z1 + 22) (S35)

Note the slight change of notation in the controller transfer function: the proportional gain Kp here is equal to KpKg
in Equation (S7). This change of notation is necessary to perform a fair comparison with the filtered proportional
controller. Recall that the supporting input @ = h(z2) that steers the output to the robust setpoint at steady state
depends solely on the setpoint r and the process (see Assumption 1 and the remarks thereafter). Therefore, as long as
closed-loop stability is maintained, RPA is achieved with Zy, = 11/6, and the steady state value Zs is independent of 7.
However, z; changes in accordance with 7 to guarantee RPA. From Equation (S5), at steady state we have u = 1z 2s,
and thus we can express z; = 77% To this end, getting rid of z; in the gains of SAIF controller yields

092 o090
K]:#, Kpi%y W0:7ﬁ+7722- (S36)
ne T 22 5, T N7 22

Observe that K; and wg are monotonically increasing in 7, while K p is monotonically decreasing in 1. Hence, varying
the sequestration rate 7 tunes the integral and proportional gains in opposite directions. Next, let us examine the two
extreme values of : 0 and co. Observe that as n — oo, we have
lim K7 = o9, lim Kp =0, lim wy = oo. (S37)
n—00 n—00 n—00
Therefore, increasing n towards infinity yields a pure integral controller (with no low-pass filter). In contrast, for small
values of 77, we have
- 0'29
P~
1/ z2
Observe that Equation (S38) becomes identical to Equation (S4) (with Kp = K% = 0) by equating the degradation
rate 0 of Z in the filtered proportional controller to the cutoff frequency of the sAIF controller, i.e. § £ wy = u/Zs.
This implies that for small 7, the sAIF controller behaves like the filtered proportional controller. In fact, as far as
the sequestration reaction is concerned, the highest proportional gain that can be achieved by the sAIF controller
corresponds to the gain of the filtered proportional controller with § £ 1/Z,. This indicates that the proportional
gain of the sAIF controller is limited by the filtered proportional component used to assemble the sAIF controller.
This analysis reveals how the sAIF controller connects a pure integral controller with a filtered proportional controller,
where the sequestration rate n dictates the relative contribution of the two components since
Kp 0

Kp_ 0 $39
Kr  nz (539)

K] ~ 0, K wo ~ /J//Zg. (838)

where Z5 is independent of 7.



S5.2 Stochastic Setting

How does this connection established in the deterministic setting translate into the stochastic setting? We explore
this question by analyzing the coefficient of variation (CV) across different controllers for a simple birth-death process.
The CV, defined as the ratio between the standard deviation and the mean, gives us a dimensionless measure of
variability. Given the intractability of the chemical master equation (CME) and the challenges posed by the moment
closure problem, we estimate the CV of the output using the linear noise approximation (LNA).

S5.2.1 Filtered Proportional Controller

In the stochastic setting, a simple birth-death process controlled by the filtered proportional controller of Fig. 2(c)
can be modeled by a stochastic chemical reaction network (SCRN) represented by the following stoichiometry matrix
and propensity function

S:[l -1 0 0], Mz, 22) = [h(z2) vz Oz (5z2]T (540)

0 0 1 -1

LNA provides algebraic equations that approximate the stationary mean (E[X] ,E[Zg]) and covariance X of the
closed-loop state vector [X ZQ}T given by

h (E[Z2]) — AE[X] ~ 0
OE[X] — 6E[Z,] ~ 0 (S41)
AL +3AT W0,
— — h(E[Z E[X 0 = .
where A £ [97 _(:52] WA { ( [ 2])0—1—7 [ ] GIE[X'] +5E[Zg]] and oo £ —1/ (E[ZQ]) Using the first two
equations in Equation (S41), we get rid of the terms h (IE[ZQ]) and IE[ZQ] in W to express it in terms of IE[X] as

0 20
allows us to express the CV in terms of the expectation as

W = {2’7 0] ]E[X] Thus solving the Lyapunov equation in Equation (S41), we obtain Var[X] from ¥;;. This

CV[X]z ~

729(02 — 9) } . (S42)

E[X] [ T 5+ 0)(6 + 020)

A o6

To connect the CV with the deterministic proportional gain, we recall that Kp = = and wy = ¢, and thus we have

Kpan (52 — 1)
(v +wo)(v + Kp)

. (943)

Compared to the CV in the open-loop in Equation (13), the filtered proportional controller attenuates noise if
Kp < 0 or equivalently oy < wy. (S44)

It is important to mention that this result should not be interpreted as ”lower proportional gain reduces noise”. Instead,
it shows that the noise reduction is constrained by the low-pass filter (wp and #). In fact, if we increase wy and 6
towards oo, the filtered proportional controller approaches the unfiltered proportional controller which unconditionally
reduces noise.

S5.2.2 sAIF Controller

Next, we consider the simple birth-death process controlled by the sAIF controller depicted in Fig. 3(a). The closed-
loop can now be modeled as a SCRN represented by the following stoichiometry matrix and propensity function

1.0 0 O
10 -1}, Mz, z1,20) = [h(z2) vo p bz nzlzg}T. (S45)
0 1

1 —
S=1{0 0
0 O -1



Once again, LNA provides algebraic equations that approximate the stationary mean (E[X ] ,E[Zl] ,]E[Zg]) and
covariance Y of the closed-loop state vector [X A ZQ]T given by
h(E[Z:]) —E[X] =
w— nE[Zl] E[ZQ] ~0

_ _ _ S46
OE[X]| —nE[Z1| E[Z2] =0 (546)
AS +EAT + W 0,
N h([2:]) + B[] 0o 0o
where A £ | 0 —nE{gg —nE gﬁ , W= 0 p+nE[Z,] E[Zs] ﬁE[Zl] IEiZ]
0 —E|Zy| —nmE|Z; 0 nE[Zl] E[ZQ} GE[X} [Zl] [ ]
and oy £ —h/ (]E [Zg]). Using the first three equations in Equation (S46), we get rid of the terms h (IE[ 72]) 1, and
2% 0 0
E[Zl] E[Zg} in W to express it in terms of ]E[X} asW =10 20 0 IE[X'] Similarly, we substitute E[Zl] ~
0 6 20

,u/nIE[Z ] and IE[ZQ] ~ h! (’yIE[)_(]) in A. Hence, solving the Lyapunov equation in Equation (S46), we obtain
]

Var[ from ;. This allows us to express the CV in terms of the expectation as

o2 1 020(02—w0)+nE[Zz] o2 (wo +v+0)
CVIX]"~ E[X] (v +wo) (Ywo + 026) — 1E[Zs] 026 =
where B _ I _ - >
wo =1 (E[Z:1] + E[Z,]) = G| + nE|[Z,] and  E[Z] ~h™! (E[X]). (S48)

Two observations can now be made regarding Equation (S47) for a given setpoint E[X]| = /6. First, computing the

derivative of CV[)_( ]2 with respect to n yields

d cr2  p0oE[Zs] 2 WQVIE[ZQ]AL +2n(72 + 07 + 520)E[ Z ] + (2 + 0y + 2npu) ] + (27?4 207 + 020)E[ Z2] + yp®

4 v 5 =k
dn E[X] [( + wo) (ywo + 020) — nE[Zs] 526]”
(549)

Given that -+ CV[ } > 0, it follows that the coefficient of variation for a specified expected value is a monotonically
increasing functlon of the sequestration rate 1. Consequently, the LNA reflects the trend observed in the simulations
depicted in Fig. 5, showing that increasing n leads to a higher noise level in the output.

The second observatlon pertains to the connection of the sAIF controller with the filtered proportional controller.
Indeed, observe that for small 7, from Equation (S47), we have

= 1 0'29 (0'2 —wo)

2 p
VI~ 537 11 o) (oo + 028)

hmt (VE[X])

with  wy = (S50)
When the degradation rate § of Zs in the filtered proportional controller is set equal to the cutoff frequency of the sAIF
controller with small 7, namely § £ wy = /h~" (vE[X]), Equation (S50) becomes identical to Equation (S42). This
alignment underscores that in scenarios where 7 is very small, the sAIF controller mimics the behavior of the filtered
proportional controller with respect to CV, similar to observations in the deterministic framework. Consequently, the
minimum CV achievable by the sAIF controller is constrained by its hidden proportional component - an observation
that is seen in the simulations of Fig. 5.
To explicitly connect the CV with the deterministic framework, we recall from Equation (S36) that

Kp _ 0'29 oy = K};Mo
wo
- (S51)
UE[ZQ} g2 = QKI
K = - E Z == .
! wo = [ 2] Kp
Substituting for o3 and nE[Z;] in Equation (S47) yields
. 1 Kpuwo (B2 —1) + Ky (wo+v + 0 1 Kpuwo (B2 —1
CV[X]Q ~ _ PWO( 0 ) I (WO i ) > _ PWo ( 7] ) (852)
E[X] (v +wo) (v + Kp) — 0K E[X] (v +wo) (v + Kp)

where the lower bound is exactly the CV corresponding to the proportional component given in Equation (S43) which
is achieved by setting the integral gain K7 to zero.

10



S6 Non-Ideal Conditions: Dilution Effects

In this section, we examine the properties of the various controllers while considering the effects of dilution on the
controller species.

S6.1 Steady-State Sensitivities in the Deterministic Setting

Consider the closed-loop configuration shown in Fig. 2(a), which consists of an arbitrary regulated network—referred
to as the process Pa—subject to a constant disturbance A. The system’s input and output are denoted by u and
y, respectively, with y potentially representing a species concentration, such as zj, as an example. The feedback
controller, denoted by C, takes the output y as its input and generates the control signal u, which is fed back to the
process. Let z and z be two nonnegative vectors representing the internal states of the regulated network and the
controller, respectively. The deterministic dynamics of the closed-loop system are described by the following set of
nonlinear differential-algebraic equations

T = fa(z,u),
Yy = gA(SC,’LL),

z= ’L/)(Z’ y)a
u = h(z),

Process: y=Palu) <= {
(S53)
Controller: u=C(y) = {

where fa, ga, ¥, and h are continuously differentiable functions defined on the positive orthant. Observe that here u
is a function of z only.
Definitions. The set of feasible inputs U is defined as the range of h over the positive orthant, i.e.,

U= {u>0:32>0with = h(2)}. (S54)

The set of admissible setpoints of the process Pa with disturbance A over the set of feasible inputs U is denoted by
R(Pa,U) with
R(Pa,U)2{§>0:3ueU,z >0 with fa(Z,4) =0 and §j = ga(Z, @)} . (S55)

The steady-state input/output maps of the process and the controller are expressed as

Process: 7="Paa) < = fA(?J:l),
y=ga(z,u),
_ (S56)
Controller: @ = C(y) — {? i Zéf; ),

where we assume for simplicity that the algebraic equations fa(Z,%) = 0 and ¥ (Z,7) = 0 have unique non-negative
solutions z and z for a given u and 7, respectively. Finally, the network Pa is strictly monotonic if P} (#) does not
change sign for all @ > 0, and the closed loop is said to operate in a negative feedback configuration if P and C have
opposite monotonicity or P4 (4)C' () < 0.

S6.1.1 Comparison Between Non-Ideal sAIF and Filtered Proportional Controllers

We are now ready to prove Theorem 1 which is repeated here for convenience.

Theorem 1. For any strictly monotonic requlated network under a constant disturbance A, operating in negative
feedback with either a non-ideal sAIF or filtered proportional (fP) controller, assume identical dilution rate § and
strictly monotonic actuation mechanisms hg for both controllers (see Fig. 6(a)). At any desired steady-state output
Ty, =r, the steady-state sensitivity to the disturbance satisfies

’63@ P

oy, SAIF 8@[/
0A

OA

Moreover, if either p or 0 is fized and the other tuned to maintain T = r, the sensitivity strictly decreases as the
sequestration rate n increases.
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Proof. Consider an arbitrary process Pa infiltrated by a constant disturbance A, and whose input and output are
denoted by u and y, respectively. The dynamics of the closed-loop systems with either the non-ideal sAIF controller
Cs or the filtered proportional controller C, are given by the following equations:

Process: y="Paln) < &= fa(z,u)
y = ga(z,u)
21 =p—nz120 — 021
Non-Ideal sAIF Controller: u = C4(y) = 2o = 0,y — 2120 — 022 (S57)
u = hs(22)
o 5
fP Controller: u=Cyy) = Zg = Upy — 022
u = hg(z2).

Here, fa,ga, and hg are continuously differentiable functions, with hs being strictly monotonic. Observe that the
dilution rate § and the actuation mechanism h are the same for both controllers.

For a given disturbance A and desired admissible steady-state output § € R(Pa,U), there exists a « € U such
that § = Pa (). Furthermore, since @ € U, there exists a Zo > 0 such that h(22) = 4. Therefore, we have

J="Paohy(z) = Z=h;'oPy(y) £ F(y,1), (S58)

where the inverses exist due to the strict monotonicity assumptions. These expressions are valid for both controllers.
Next, we write a single nonlinear algebraic equation for 4 for both controllers. The following calculations encapsulate
both cases with (8,7n) = (05, positive) for the sAIF controller, while (6,n) = (6,,0) for the fP controller. Dropping the
bar for convenience, we have

iz — 6z =0
{ gz o — 02+ [ —Oy) + 02— 00y =0  with 2 =F(y,A).  (S59)

Oy —nz129 — 029 =0

The sensitivity of the steady-state output with respect to disturbances can be implicitly calculated as follows

0z2 oy 0z9 Oy Z2 = F(y7 A)
2 .
2776z26—A— aAngr[ n(p — 9y)+5]6—A—598A =0 with  §9z0  9F(y,A) dy 8F(y7A). (S60)
0A Jdy O0A 0A
We proceed with some algebraic manipulations to obtain an expression for X
[277622 + 6% +n(p— Hy)] —0(nz2 +9) %Y =0
5‘A 0A
0 dy
[0(nz2 +6) +n(u — by + 025) af 0 (nz2+6) 55 =0
0z Oy
ué 822 - @ _
|92 40y _ (S61)
5{“(77,22%)2} on Yoa ="
np OF(y,A) 0y | OF(y,A) dy
1 A A —_ —
5{ +(77z2+5)2} [ oy 9A oA bon =0

[6(1+( i >8F(y,A)_9]8y:_5(1+( i >6F(y,A)

nz2 + 0)? Ay 0A nz2 + 0)2 0A
OF (y,A
O o)
DA~ OFWAl _ o 1
% J 1+(nz:lé)2
Note that BF(u. A )

A _ 1 (S62)
%y Wy (hs' o PA*(y)) Ph (Pa (1))
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since we have a negative feedback configuration. Therefore, we have

50 ‘BF(gj,A)
vl DA
’(‘)A’ B ’8F(7{,A) ’ 9 L (S63)
oy S+ GFG a2
To fix the setpoint ¥ = r at some disturbance Ay, the parameters p, 0 and 1 should satisfy
. _ . _ F(r, Ao) i
673 -0 52 —-00y=0 = 6= . 1) . S64
nd%; + [nln —69) +6°] 22 4 r N F(r,Ag)+ 0 (564)
Therefore the sensitivity becomes
AF (1,A0)
9y ‘ oA
A (7,A)=(r,20) a ’3F(T,Ao) + E(r80) 1+%W ' (S65)
oy " Y GRmAgTe?
As such, for the cases of the non-ideal sAIF and filtered proportional controllers, we obtain:
~ ‘BF(T,AO) 1 nu
O0A F A 1+ 5 77manTs
non-ideal sATF: ‘gz = with ¢y 2 (r,A0) ~ "5 2E(20) 00
B.80)=(rh0) | 2B 1 g T I GRG AR
(S66)
oy B F(r, Ao)
£P: pa S with g, 2 £080)
(g,A)=(r,Ao) % + ¢p r
Observe that
1
F(r,0) | 1+ 557080775 NF2(r, D) PG A0
s — Op = 1 o —-1| = 5 1 o >0, (S67)
r t GF AT r t GF AT

and therefore the sensitivity in the case of the non-ideal sAIF controller is lower than that in the case of the filtered
proportional controller.
Next, we analyze the monotonicity of ‘ ; ‘ with respect to 1. We consider two scenarios.

Scenario 1. Fix 6,9, the steady-state output level § = r and the disturbance level A = Ay. Then as 7 is adjusted,
1 should be tuned to maintain the steady-state output level at § = r according to the following equation

W6z 4 [n(u—09) + 6% 2 — 305 =0 = p= (nF(r, 80) +8) (67 = 6F (. A0) ). (S68)

1
nF(T7 AO)

Note that 8y — dzo = nz122 > 0, and thus 0r — §F(r, Ag) > 0 for any admissible fixed point. In this scenario, we
substitute for 4 in Equation (S63) to yield the sensitivity given by

6F(’I‘,Ao)
‘ag - oa (S69)
_ - |oF(rA ’
N N e R e =iy
T b 0 80)
F(r,Ag) nF(r,Ag)+5

Clearly, in this scenario the sensitivity is a decreasing function in 7.
Scenario 2. Fix u, d, the steady-state output level § = r and the disturbance level A = Ay. Then as 7 is adjusted,
0 should be tuned to maintain the steady-state output level at § = r according to the following equation

_ _ . _ F(r, Ay np
n0z3 + [n(p—0y) +6°] 22— 60y =0 = 0f= (T )[6+ AV NETIR (S70)
In this scenario, we substitute for § in Equation (S63) to yield the sensitivity given by
ou ’M
9 _ 95
’8A (5.8)=(r,Ao) ’8F(r B0) | | F(r:80) a8 fnucr-nzz il (871)
oy " Y GEmAgT?
Note that
1+5 FrA nuFer N+ 26 [nF(r,Ag) + 6
AT [npe+ (nF(r, Do) + 6)?]
Therefore, in this scenario the sensitivity is also a decreasing function in 7. O

13



A numerical demonstration of this result is presented in Fig. S6, highlighting the steady-state errors caused by
a disturbance and comparing the performance of the non-ideal sAIF controller with that of the filtered proportional
controller.

S6.1.2 Comparison between Non-Ideal sAIF and rAIF Controllers

We are now ready to prove Theorem 2 which is repeated here for convenience.

Theorem 2. For any strictly monotonic regulated network under a constant disturbance A, operating in negative
feedback with either a non-ideal sAIF or rAIF controller, assume identical controller parameters i, 0,7, and § for both
controllers (see Fig. 0(a)). At any fized desired steady-state output Tr,, the steady-state sensitivities to the disturbance
satisfy:

% sAIF % rAIF f . E B ﬁ
aA oA R R
aﬂ sAIF % rAIF Zf o H - ig
A oA E>%  ne

assuming the absolute value of the actuation gains of both controllers are matched (see Fig. 6(c)).

Proof. Consider an arbitrary process Pa infiltrated by a constant disturbance A, and whose input and output are
denoted by u and y, respectively. The dynamics of the closed-loop systems with either the non-ideal sAIF controller
Cs or TAIF controllers C, are given by the following equations:

= fa(z,u)
Y = ga(z,u)
2] = p—nziz; — 0z
Non-Ideal sAIF Controller: u = Cs(y) — 25 =0y —nzizy — 025
u = hg(23)
il =p—nzzp =0z
Non-Ideal rAIF Controller: u=C,(y) < zy =0y —nzizy — 02y
u = hp(27).

Process: y=Palu) <= {

(S73)

Here, fa,ga,hs and h, are continuously differentiable functions, with hs; and h, being strictly monotonic. Observe
that all controller parameters u, 8,7 and § are kept the same for both controllers.

Let Uy and U, be the sets of feasible inputs associated with hg and h,, respectively. For a given disturbance A
and desired steady-state output g that is admissible for both controllers, i.e. § € R(Pa,Us) NR(Pa,U,), there exists
a i € Uy NU, such that j = Pa(@). Furthermore, since @ € U; NU,, there exists a z5 > 0 such that hy(z5) = % and a
Z] > 0 such that h,(Z]) = @. Therefore, we have

u = hy(23) = he(27) = PR (1), (S74)

where the inverse exists due to the strict monotonicity assumption. Furthermore, at steady state, the following
equations are satisfied

—nEfEs — 575 =0 —nETEl 55T =0
O PR Sl B 575
0y —nzizs —0z5 =0 0y —nzizh —dz5 = 0.
Then we have ~
T N VA p=0y 8\’ du| s
1=A 75 5 77-1—\/( 5 7 —l—77 =2
- (S76)
S N ) . 7
22—22—2 5 774'\/( 5 " + " = Z9.

Therefore, having the same setpoint and actuation gains for both controllers are translated to the following equations

55 _ 5T A 5 2 = h o PN (G) 2 Fu(g, A
S ST o B T ER AT R .
2= h o P3E) 2 5 A),

s __ =r A -
Zo9 = Z9 = Z9,
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Next, we calculate the steady-state sensitivities of the output with respect to the disturbance for both controllers. For
the rAIF controller we proceed by dropping the bar for convenience. We have

{u—nzlzg—ézlzo

— izl — [n(p— by) — 52] z1—0pu=0 with z1 = Fr.(y,A). (S78)
0y —mz120 — 020 =0

The sensitivity of the steady-state output with respect to disturbances can be implicitly calculated as follows

8y aZl 21 = FT (ya A)
2n6z1 8A + 0552 — (i —0y) - 5] oA =0 with 0z OF(y,8) 9y OF.(y.8) (S79)
0A Ay 0A 0A
. . . . . . 9
We proceed with some algebraic manipulations to obtain an expression for 5%
0z1 dy
2 — J— —_— =
(27621 + 6% — n(p — Oy)] 8A+ 918A 0
0z1 dy
[6(nz1 +5)—77(M—9:U—521)}37A+ nbz 1aA =0
y
[0(nz1 +5)+n5zQ] 8A <+ 0z 18A =0
00y 8z1 oy
|:5(7721+(5)+7]7721+5:| 8A HlaA—O
P P 92 mbzm Oy _ (S80)
(nz1 +9)2| OA ~ nz1 + 6 0A

slio 0y OF(y,A) 9y O0F.(y,A) nbz dy
(nz1 +9)? dy  OA OA nz1 + 6 0A

[5 (1+< nfy )aFr(y,A)+ Nz ]83/:_6 <1+( 1y )6Fr(y,A)

Nz + 9)2 Ay nz1 + 46| 0A nz1 + 0)2 OA
ay 3Fr(y7A)
= 9A " oA TR PR
§ (nz1+0)%+ny
Note that OF. (4. A) )
>0, (S81)
dy hs. (h,- °oPx (y)) Px (PA (y))
since we have a negative feedback configuration. Therefore, we have
OF,(y,A)
ay ‘ oA

OF, (y A) 49 nz1(nz1+9)
§ (nz146)2+nby

The calculations for the sAIF controller was already carried out in the proof of Theorem 1, and so the results are
summarized in the following equations

P ‘ OF,(r,Ao) ; .
SAIF: ‘aZ :# with ¢, £ 2
(7,4)=(r,A0) ‘# + ¢s + (nz2+9)
(S83)
oy ‘73FT5(92A°) 0 nz(nz + )
rAIF ‘y = with ¢, 2 TLIRT A
OA | (g,8)=(r,20) ‘M + &, 5 (nz1 + 6)% + 0oy

15



First, observe that

h (b o P51 (r)) Py (PR (1)) ‘
1
h(z1)Ph (PA'(r))

=

’8Fr(r, A) ‘ 1

(S84)

h(22)Py (Pa'(r))
1 ‘ _ ’8175(7’, Ao)

)

hg (hst o Px*(r)) Ph (PA1 (1) Oy

and similarly

‘ OF:(r, Ao) . (S85)

0A

Hence, we are left with comparing ¢, and ¢,.. We have

0| nznz+6) 1
(21 +0)* + 0y 1+ =ty

_ 8F9 (Ta A0)
B 0A

¢T_¢S

(S86)

"3
_Y
=3

Nz nZy + 6 ]

a0+ 2y R0t s

But recall that z; = ﬁ and zp = %. Then

0 nz1 NZa + 6
Or=9s=3 [nz1+5+n22 _1721+(5+7721]
:Q’I](El—ig)—(s
0n(z1+22) + 06
0 n%@—é
T on(z + )+ 6
_ 0 n(p—0y) -4
2 n(z1+22)+6°

(S87)

2
Hence, ¢, > ¢ iff y < 5 — %. Therefore,

rAIF sAIF 52

E_o
< AT (S88)

%
oA

l

%
oA

< ‘

(7,8)=(r,A0) (7,8)=(r,A0)

O

S6.2 Noise Analysis for the Non-Ideal sAIF Controller Using Linear Noise Approxi-
mation

Consider the simple birth-death process controlled by the non-ideal sAIF controller depicted in Fig. 6(a). The closed-
loop can now be modeled as a SCRN represented by the following stoichiometry matrix and propensity function

1 -1 0 0 O 0 0 .
S=|0 0 1 0 -1 -1 0|, Mz, 21, 22) = [h(zg) vy u Ox mzizo Oz (522] ) (S89)
o o 01 -1 0 -1

The goal here is to derive the sensitivity of the stationary coefficient of variation of the output CV [X } to the seques-
tration rate 7 for a fixed setpoint IE[X' ] = r. LNA provides algebraic equations that approximate the stationary mean

(]E[X] ,E[Zl} ’EI:ZQ]) and covariance ¥ of the closed-loop state vector [X A ZQ]T given by
h (E[Zs]) — AE[X] ~ 0
1t — 1E[ 21 E[ 2] — 6E[Z4] ~ 0
OE[X] - jE[Z)] E[Zs] — 6E[Z5] ~ 0
AS + SAT + W =0,

(S90)
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—y 0 —02
where A2 | 0 —nE[Zs] =6  —nE[Z:] |,

0 —’I]E[Zg] —nE[Zl] -9
h (E[Zs)) ++E[X] 0 0
W = 0 1% + nE[Zl E Zz + 5E|:Zl} 77]E Zl E Z2 and g9 S —h' (E[ZQ])
0 nE[Z1| E[Z,] OE[X] + nE[Z1] E|Z;] + 6E[Z]
Using the first three equations in Equation (S90) and fixing the stationary output to IE[X ] =7, We can write
_ _ _ M E[Z,] np
MEZD =HEE] EA] =l md 0= <5+nE[Z2} +5>.

Note that the last equation provides a tuning scheme for 0 that yields, up to an LNA approximation, a fixed stationary
output E[X] = r as 1) is varied. Hence we can get rid of h (E[ZQD ,0, and E[Zﬂ in A and W to express them in terms
of r and ]E[ZQ] as

[ - 0 —03
Ao 7 0 —nE[Z;] -6 _nlE[%g]H
_E[?] (5 + n]E[ZH]Jr&) nE[Zs] nE[Zz]+6 J
yr 0 0
W = 0 2p n?aﬁi]ils
2 am(2) (s +9)

Note that, up to an LNA approximation, E[Z;] is independent of n when the stationary output is fixed E[X]| = r.
Using the expressions for A and W, the system of linear equations AX + AT + W = 0 can be solved for £. Due to
the complexity of the calculations, Matlab’s symbolic toolbox is employed to compute ¥, specifically its first entry,
which represents the stationary variance of the output, Var [X ] The MATLAB code can be found at the following
Github repository https://github.com/Maurice-Filo/Sensor-Based-Biomolecular-Integral-Controllers. While the full
expression for ¥ is complicated and not presented here, the derivative of the variance with respect to 1 at n = 0 is
given by:

M _ _E[Zz]/ir ‘h’(]E[Zg])] (v+ |h/(E[Z2m)
o ly—0EX]=r  00+7)? (ElZ] |VE[Z])]+~7) <0. (S91)

This indicates that as n increases from zero (the filtered P controller case) while maintaining a fixed output level,
the variance—and consequently the coefficient of variation (CV)—must decrease. This analytical approximation
complements the numerical findings in Fig. 6(e), which show a decrease in CV as 7 increases from zero.

17



6\ ou ou
@/@ 9 >0 5, <0

Production Removal Mixed Production/Removal

(2 (2
@%@ @2 @i»@—»@ o ®=02
() ()

Additive _ az B ay B o m )
(Separate Actuation) u=kzt za/K2 =" (1 T /m + km) £(@) u=kizy — kazaf(z) YETTY n/mg(x) T 22/ K2
Multiplicative _ k= _ ke (@)
(Competitive Actuation) YT T ks U T @

Figure S1: Actuation with multiple species. This extends Fig. 2(b) to the case where two controller species Z1 and Zz actuate X
positively and negatively, respectively. The implementations can once again be via production and/or removal reactions. Furthermore, two
particular classes of functional forms are shown here, where the effects of Z1 and Z2 enter additively (such as separate promoters for the
same gene) or multiplicatively (such as competition over the same promoter).

K
Kp(1—£2)

w

wy = Repression ST1

Repression 52 Figure S2: Filtered-PI Coverage. The colored regions
depict the achievable PI gains (Kp, K1) and cutoff fre-
quency wo by adjusting the corresponding biomolecu-
lar parameters. These regions are color-coded to repre-
sent different actuation functions h, modeling three dis-
tinct negative actuation mechanisms: repression Equa-
tion (S13) with and without cooperativity in green
(n = 1) and blue (n = 2), respectively, and degrada-
tion Equation (S19) in red. Note that @ represents the

steady-state supporting input necessary to achieve the
% 0 desired setpoint, and its value depends solely on the
% plant and the desired setpoint. The span of achiev-

///

wo

7 // able filtered-PI parameters for repression and degra-

)
'\/ ’////’/// dation actuations are respectively calculated as S)' in

ada Equation (S18) and S, in Equation (S22), and they are

0 shown to satisfy S C SPT! C S;. This demonstrates

/ K I that degradation provides greater tuning flexibility than

2u repression actuation. It also demonstrates that coopera-

K Iz _ K tivity helps in expanding the achievable gains and cutoff
Y W =

P Kp(1— ) frequency.
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Figure S3: Dynamic Performance Assessment. A birth-death process (see Fig. 5(a), left) is controlled, as a case study, by rAIF and
sAIF. The control action is denoted by u and the degradation rate of the process is denoted by 1. (a) Performance limitation of rAIF.
Positive actuation by Z1 (i.e. uw = kz1) yields a response that cannot be sped up beyond a certain threshold without inflicting oscillations.
The three plots to the left depict the root-locus of the linearized closed-loop dynamics in the complex plane for three values of the cutoff
frequency wo as the integral gain K7 is increased from zero up to its upper bound given in Equation (S12). Note that sp, calculated
analytically in Equation (S25), denotes the breaking point where two eigenvalues meet on the real axis and break away to become complex
conjugates. As wg is increased, one real eigenvalue moves more to the left and the breaking point s; tends to —v1/2. This indicates that
the dominant eigenvalue is confined (by the breaking point s;) within a small region close to the imaginary axis when 7; is small, and
thus imposing a limitation on the achievable performance as demonstrated in the simulations shown in the right plot. (b) and (c) Design
flexibility offered by sAIF. Giving rise to a filtered-PI controller, sAIF offers more flexibility in achieving superior performance compared to
rAIF. These two panels show the steps of a pole-placement control design problem where the three dominant poles are placed on the real
axis of the left-half plane to ensure a stable and non-oscillating response. The design problems start by picking the poles, then computing
the PI gains and cutoff frequency, and finally computing the biomolecular parameters that allow us to obtain the nonlinear simulations to
the right. With degradation actuation in Panel (b), one can place the eigenvalues arbitrarily as far to the left as desired and thus achieving
a response that is as fast as desired without overshoots or oscillations. In contrast, with repression in Panel (c), there is a restriction on
how far to the left the poles can be placed. However, this restriction can be mitigated by introducing higher cooperativity. (d) Repression
without cooperativity. Without cooperativity, the three poles cannot be placed in the same location. To this end we place them at two
locations on the real axis. The shaded regions in the left plot depicts the feasible locations that are constrained by the PI coverages (see SI
Section S4). These regions indicate that one cannot place all the poles to the left of —v; which still yields a better performance than rAIF,
but cannot outperform those presented in Panels (b) and (¢). The numerical values of the parameters are y1 = 1,4 =5,0 = 1,k1 = 1075,
To change the setpoint at t = 0, p is doubled.
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Figure S4: Dynamics of Average Concentrations in the Stochastic Setting. This figure presents the stochastic counterpart to the
simulations shown in Figs. 4 and S3. Biomolecular parameters are taken directly from the root locus analysis performed in the deterministic
setting, and stochastic simulations—averaged over 10° trajectories—are used to track the evolution of mean concentrations. The results
confirm that the same dynamic patterns persist under stochasticity, with a slight overshoot observed in some cases, which can be mitigated
by selecting less aggressive pole placements.
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Figure S5: Controlling three processes with rAIF, sAIF and fP controllers. (a) The processes to be controlled are denoted by P1, P2, and
P3. P1 is a birth-death process identical to that in Fig. 5(a). P2 is a process with two species which can be used to model gene expression
with X1 being the mRNA while X2 being the protein. For this model, k1 is the translation rate while 1 and 2 are the removal rates.
Finally Ps3 is similar to Pa, but with an additional maturation step where X2 is converted to X3 at a rate c. Note that all arrows pointing
to a species indicate catalytic production reactions except the curved arrow which indicates a conversion reaction. Furthermore, the square
shaped arrowhead indicates either activation or repression. These processes are controlled by three different controllers: rAIF and sAIF
and a fP controller. (b), (c) and (d) displays the relationship between the coefficients of variation and expectations at stationarity for the
outputs. The left plots correspond to rAIF, while the right plots correspond to sAIF and fP feedback. The solid black lines are calculated
1 . k kic(c+vy1+v2+
]E[)Jgf] with § =0, ’Y1+1’Yz and (’Yl+"/31)(’(v1+112+1§(7’2Yi-)c+73)
for P1,P2 and P3, respectively. In contrast, the remaining data points are computed empirically through the stochastic simulation
algorithm!, generating 10* — 10% trajectories on the Euler cluster (https://scicomp.ethz.ch/wiki/Euler). Numerical values for P; are
v1 = 0.1. Numerical values for P2 are: v1 = k1 = 1,2 = 0.1. Numerical values for P3 are: 71 = k1 =c = 1,v2 = 3 = 0.1. The controller
parameter values are as follows: a = 2,0 = 1,k = 0.05,1 € [1072,10%],k € [10~3,1],6 € [0.1,20], u € [1,10].

analytically using an equation similar to Equation (13) given by CV[X L} =
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Figure S6: Steady-state error comparison: non-ideal sAIF controller vs. filtered proportional controller. (a) Closed-loop networks
illustrating the non-ideal sAIF controller and the filtered proportional controller. The topology of the non-ideal sAIF controller differs from
the ideal sAIF controller shown in Fig. 3, as the controller species Z1 and Zz are subject to dilution at a rate 4. (b) Example process and
actuation mechanism used in numerical simulations. The process is a simple birth-death system with L = 1 species, where the disturbance
perturbs the degradation rate 1 of the output. Both controllers share the same actuation mechanism, modeled by the function h, with «
representing the maximal production rate and x the dissociation constant of the repressor Zz2. (c) Numerical demonstration of steady-state
errors. In these simulations, the example process is regulated by the non-ideal sAIF controller with fixed parameters: v1 = § = 0.1,
a =2, and xk = 0.05. The swept parameters are pu € [0,10], € [0,10%], and 6 € [1075,10]. Note that when 1 = 0, the system reduces
to the filtered proportional controller. A disturbance is applied by halving the degradation rate. The 3D plot on the left illustrates the
steady-state error caused by the disturbance as u, 6, and n are varied. For each combination of these parameters, the steady-state error
and the corresponding setpoint are computed and represented as points in the plot. The results indicate that, for any given setpoint, the
filtered proportional controller (n = 0) exhibits the highest steady-state error. As 7 increases, the steady-state error decreases, with the
minimum error achieved as n — co. The plot on the right provides detailed examples for specific parameter values. The blue responses
correspond to a fixed p = 10, with 6 adjusted to maintain a pre-disturbance setpoint of 10. The magenta responses correspond to a fixed
0 = 5, with p tuned to achieve a pre-disturbance setpoint of 5. These examples highlight the dependence of steady-state error on parameter
tuning and demonstrate the improved performance of the non-ideal sAIF controller as n increases.
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Figure S7: Dynamic performance vs. steady-state error for non-ideal sAIF and rAIF Controllers. (a) Closed-loop network diagrams
of the sAIF and rAIF controllers, highlighting the scanned parameters. (b) Regulated network and actuation functions. The regulated
network consists of a simple single species process whose production is controlled by the feedback controllers, while its degradation rate 1
is disturbed by halving its value. The actuation is modeled via activating and repressing Hill functions for the rAIF and sAIF controllers,
respectively, with a as the maximal production rate and x as the dissociation constant. (c) Simulation results. Controller parameters
,0,m,a, and k were jointly scanned, and for each combination, the pre-disturbance steady-state level, post-disturbance steady-state error,
and settling time were computed. Each parameter set corresponds to a data point—shown in blue for sAIF and red for rAIF. The sAIF data
points (blue) extend further downward, indicating that sAIF can simultaneously achieve faster settling times without sacrificing steady-state
errors. This demonstrates that sAIF relaxes the trade-off between dynamic performance and steady-state error more effectively than rAIF,
due to the additional control afforded by its proportional component. Representative data points for sAIF (square) and rAIF (triangle)
are highlighted and their dynamic responses are shown in the right-hand-side plots with slices of the 3D plot binned over 3 pre-disturbed
steady-state levels. Simulation details: v; = § = 0.1, pu,0,a € [0.1,10], n € [107°,103], x € [1073,0.1]. Settling time was defined as the
time required for the signal to enter and remain within a 1% tolerance band around the new steady state. Simulations were performed
in MATLAB over a grid of 30° parameter combinations using a workstation with 128 parallel threads. The three slices are binned across
three steady-state output levels (pre-disturbance) given by 2,10 and 20 with a bin width of 0.04. The number of data points collected for
each slice are shown in the titles of the plots.
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Figure S8: Comparison of stationary noise between the non-ideal sAIF and filtered proportional (fP) controllers in feedback with three
regulated networks consisting of (a) one species, (b) two species, and (c) three species. Panel (a) is identical to Fig. 6(e) and is included
here for convenience. In all cases, the actuation function is u = ﬁ with fixed o = 2 and & = 0.05, while § € [1073,1071] is varied

for both controllers. For the non-ideal sAIF controller, § € [107°,10], p € [1071,10], and n € [107°,10°] are also varied across all three
networks. For the fP controller, 6, € [1072,10] is varied. The simulations consistently show that for a fixed repressor Z2 (and thus the
actuation mechanism hs), the non-ideal sAIF controller either outperforms or matches the fP controller in reducing stationary noise in the
output. The numerical values of the parameters of the three regulated networks are as follows: (a) v1 = 0.1, (b) v1 = k1 = 1,72 = 0.1,
and (¢) v1 =c=k1 =1,72 =v3 =0.1.
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Figure S9: Numerical analysis in the presence of both intrinsic and extrinsic noise. (a) The three open-loop circuits under consideration,
filtered proportional control, and sAIF control. In OL 1 and the filtered-proportional control circuit, plasmid 1 serves as a dummy plasmid
in the experiments—included solely to ensure that all circuits operate under comparable plasmid burden but do not affect the output.

However, it does not influence the regulated output Xj.

Similarly, in OL3, both plasmids 1 and 2 are dummy plasmids and do not

affect X1, serving only to maintain consistent experimental conditions. (b) This panel shows the experimentally measured distributions
of plasmid copy numbers for three plasmids: pl5A, pSC101, and ColE1, as reported in2. These distributions are used to model extrinsic
noise in our simulations. Specifically, the propensities of the production reactions in the model (as in Fig. 6) are multiplied by the plasmid
copy numbers Ni, No, and N3, which are now treated as random variables sampled from these distributions. As noted in?, the standard
deviations are comparable to the means, highlighting the significant cell-to-cell variability in plasmid abundance. (c¢) The circuits shown
in panel (a) are simulated under the same conditions as in Fig. 6, with the key difference being that plasmid copy numbers are now drawn

randomly from the distributions shown in panel (b). This introduces extrinsic variability in addition to the intrinsic noise already present.
The resulting plot—identical to Fig. 7(e)—is included here for convenience. The fixed and swept parameter values used in the simulations
are listed on the right, and can be directly compared with those used in the intrinsic-noise-only case of Fig. 6(e).
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Figure S10: Time-course experiments illustrating the dynamic response of the output to a disturbance. This figure extends Fig. 7(b) by
including an additional experiment for the filtered proportional controller, where Gene 2 is driven by both strong and weak promoters. In
contrast, Fig. 7(b) depicts only the response for the weak promoter case. Here, we show that the output level, measured in Molecules of
Equivalent Fluorochrome (MEF), for the sAIF controller falls between the two levels observed for the filtered proportional controller under
strong and weak promoter conditions. Notably, the sAIF controller exhibits significantly improved adaptation, achieving a much smaller
steady-state error compared to both cases of the filtered proportional controller.
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Figure S11: Bar graphs showing the unnormalized data presented in Fig. 7(c). All measurements reported here are in Molecules of
Equivalent Fluorochrome (MEF) units.
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Figure S12: Noise amplification in an rAIF controller. The data in this panel are adapted from previously published measurements of an
rAIF controller implemented using Sigma/anti-Sigma sequestration®. The two distributions compare the output noise level in the open-
and closed-loop circuits with comparable mean levels. Although the rAIF successfully achieved RPA (see?), it increases the CV by more
than fourfold relative to the open-loop circuit. Note that the mean superfolder GFP output (FL1-A) and CV of previously published flow
cytometry measurements of rAIF (0.2% arabinose, 7 nM 30C6-HSL) and open loop (0.2% arabinose, 0 nM 30C6-HSL) strains from Aoki
et al. (Extended Data Fig. 6(d))?3 are calculated and plotted here.
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Plasmid Gene type Circuits Description
pSKA837 1 OL1, OL2, Pjss119-Booss-intC(gp41-1)-B0015, p15A ori, spect
P
pSKAS838 1 OL3, sAIF P23119-Bo0ss-intN(gp41-1)-B0015, p15A ori, spect
pSKAS839 2 (weak) OL2, OL3 P23111-Boo3s-tetRy-183::intC(gp41-1)::tetR1g-212-B0015, pSC101 ori, cam®
pSKAS840 2 (strong) OL1, OL2, Pjo3119-Bo0ss-tetRi-1s3::intC(gp41-1)::tetR1s;-212-B0015, pSC101 ori, cam®
OL3
pSKA841 2 (weak) fP, sAIF PoraB-Booss-tetR-183::intC(gp41-1)::tetR184-212-B0015, pSC101 ori, camP
pSKA842 2 (strong) fP, sAIF PoraB-AraJ-Boossm-tetR i 183::intC(gp41-1)::tetR184-212-B0015, pSC101 ori, cam®
pSKA843 3 OL2, OL3,  Priet0-1-Boo3s- V5::araC::mScarlet-1-B0015, ColEL ori, carb®
fP, sAIF
pSKA884 3 OL1 Pjos101#-V5::araC::mScarlet-I-B0015, ColE1 ori, carb®
pSKA885 3 OL1 Pjos114-Vb::araC::mScarlet-1-B0015, ColEL ori, carb®
pSKA886 3 OL1 Pjss106-V5::araC::mScarlet-1-B0015, ColE1 ori, carb®
pSKAS887 3 OL1 Pjs3102-V5::araC::mScarlet-I-B0015, ColE1 ori, carb®
pSKA888 3 OL1 Pjo3111-V5::araC::mScarlet-I-B0015, ColE1 ori, carb®
pSKA889 3 OL1 Pjos119-V5::araC::mScarlet-1-B0015, ColE1 ori, carb®

Table S1: List of plasmids constructed and used in this study. Plasmid sequences can be found at the following Github repository
https://github.com/Maurice-Filo/Sensor-Based-Biomolecular-Integral-Controllers.

Circuit Gene 1 Gene 2 promoter Testing strain Host strain  Plasmids (in order: Gene type 1, 2, 3)
Open loop 1 ntC strong SKA1838 SKA360 pSKAS838, pSKA840, pSKA884
Open loop 1 ntC strong SKA1839 SKA360 PSKAR838, pSKA840, pSKA885
Open loop 1 ntC strong SKA1840 SKA360 PSKAR38, pSKA840, pSKAS886
Open loop 1 ntC strong SKA1841 SKA360 pSKAR38, pSKA840, pSKAR87
Open loop 1 ntC strong SKA1842 SKA360 PSKAR38, pSKA840, pSKAS888
Open loop 1 ntC strong SKA1843 SKA360 pSKA838, pSKA840, pSKA889
Open loop 2 mntC weak SKA1785 SKA360 pSKAS838, pSKA839, pSKA843
Open loop 2 ntC strong SKA1787 SKA360 PSKAR38, pSKA840, pSKA843
Open loop 3 ntN weak SKA1784 SKA360 pSKAR837, pSKA839, pSKA843
Open loop 3 ntN strong SKA1786 SKA360 pSKAR37, pSKA840, pSKA843

Filtered P ntC weak SKA1789 SKA360 pSKA838, pSKA841, pSKA843
Filtered P ntC strong SKA1791 SKA360 pSKA838, pSKA842, pSKA843
sAIF intN weak SKA1788 SKA360 PSKAR37, pSKA841, pSKA843
sAIF ntN strong SKA1790 SKA360 pSKAR837, pSKA842, pSKA843

Table S2: List of testing strains constructed and used in this study.
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