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minimize
x,u

J(x, u) =
1
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∫ T

0
x∗(t)Qx(t) + u∗(t)Ru(t) dt

subject to ẋ(t) = f
(
x(t), u(t)

)
; x(0) = x0
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First Order Method: Gradient Descent −→ Cheap but Slow Convergence

Second Order Method: Newton −→ Fast Convergence but Expensive
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(
x(t), u(t)

)
; x(0) = x0

Proposed Method: Keep cost functional & Dynamics separate!

minimize
z

J(z) =
1

2
〈z,Hz〉 H :=

[
Q 0
0 R

]

subject to z ∈M

Dynamical Constraint Set (Trajectories Manifold): 1

x = H(u)⇐⇒ z ∈M M =
{
z = (x, u) : x = H(u)

}



Precondition Constrained-Gradient Descent (PCGD)

Maurice Filo (UCSB) ACC 2018 June 28, 2018 3 / 9

minimize
z

J(z) =
1

2
〈z,Hz〉

subject to z ∈M



Precondition Constrained-Gradient Descent (PCGD)

2Hauser, J. (2002). A projection operator approach to the optimization of trajectory
functionals. IFAC Proceedings Volumes, 35(1), 377-382.

Maurice Filo (UCSB) ACC 2018 June 28, 2018 3 / 9

minimize
z

J(z) =
1

2
〈z,Hz〉

subject to z ∈M

Similar in spirit to a projection-based Newton method developed by J. Hauser 2



Precondition Constrained-Gradient Descent (PCGD)

2Hauser, J. (2002). A projection operator approach to the optimization of trajectory
functionals. IFAC Proceedings Volumes, 35(1), 377-382.

Maurice Filo (UCSB) ACC 2018 June 28, 2018 3 / 9

minimize
z

J(z) =
1

2
〈z,Hz〉

subject to z ∈M

Similar in spirit to a projection-based Newton method developed by J. Hauser 2

Two Key ideas:

−→ Two different types of projections
−→ Preconditioning the state-control space (z-space)
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M: Dynamical Constraints Manifold

∂Jk: Gradient at Current Iteration

Tzk
M: Tangent Space of M at zk

ΠTzk
M: Linear Tangent Space Projection Operator

αk: Step size at current iteration

PM: Nonlinear Trajectory Projection Operator

For Spherical Level Sets:

{
ẑk+1 = zk − αkΠTzk

M(∂Jk)

zk+1 = PM (ẑk+1)
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ẑ′k+1 = z′k − αkΠTz′

k
M′
(
∂J ′k
)

zk+1 = PM ◦W−1
(
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ẑk+1 = zk − αkΠH

TzkM
(
H−1∂Jk

)

zk+1 = PM(ẑk+1)
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(
x(t), u(t)

)
; x(0) = x0



Computational Load

Maurice Filo (UCSB) ACC 2018 June 28, 2018 7 / 9

minimize
z

J(z) =
1

2
〈z,Hz〉 H :=

[
Q 0
0 R

]

subject to ẋ(t) = f
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Tzk
M : Solve a linear two point boundary value problem for z̃k := (x̃k, ũk)

d

dt

[
x̃k
λ̃k

]
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[
Ak −BkR

−1B∗k
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[
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Qxk

]
;

[
x̃k(0)

λ̃k(T )

]
= 0
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where Ak := ∂xf(xk, uk) and Bk := ∂uf(xk, uk)
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2Grivopoulos, Symeon. Optimal control of quantum systems. University of
California, Santa Barbara, 2005.
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Concluding Remarks & Future Work

PCGD can be shown to be a Quasi-Newton method

PCGD inherits attractive properties of both first and second order
methods:

Guaranteed to converge to a local minimum
Exhibits fast convergence rate near the optimum

Future work: How to include inequality constraints?
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