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Problem Formulation: Function Space Approach

T
minximize J(x,u) = ;/0 ¥ (t)Qx(t) + u* (t)Ru(t) dt

subject to &(t) = f(x(t),u(t)); «(0) ==
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Problem Formulation: Function Space Approach

minmimize J(z,u) = ;/OT ¥ (t)Qx(t) + u* (t)Ru(t) dt
subject to &(t) = f(x(t),u(t)); «(0) ==
Define:
z = [ﬂ ; r=H(u)
Then:
minizmize J(z) = %(z,Hz) H = [%2 ]%]

subject to x = H(u)

Unconstrained Optimization: 7 (u) := J(H(u), u) = } <[H&u)] H [ng)b
@ First Order Method: Gradient Descent — Cheap but Slow Convergence
@ Second Order Method: Newton — Fast Convergence but Expensive
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Proposed Method

L e
minimize J(x 2/0 ¥ (t)Qx(t) + u* (t)Ru(t) dt

subject to &(t) = f(x(t),u(t)); «(0) ==

Proposed Method: Keep cost functional & Dynamics separate!

minimize J(z)z%(z,Hz) Ho= [(g 1%]

subject to x = H(u)
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Proposed Method

T
m'u' ;/0 ¥ (t)Qx(t) + u* (t)Ru(t) dt

minimize  J(z

subject to  &(t) = f(xz(t),u(t)); «(0) ==

Proposed Method: Keep cost functional & Dynamics separate!

S 1 Q 0
minimize J(z) = §<Z,HZ> H := [O R]
subject to x = H(u)
Dynamical Constraint Set (Trajectories Manifold): !

r=H(u) <= zeM M:{z:(:v,u):x:?’-[(u)}

1J. Hauser and D. G. Meyer, “The trajectory manifold of a nonlinear control
system,” in Decision and Control, 1998. Proceedings of the 37th IEEE Conference on,
vol. 1, pp. 1034-1039, IEEE, 1998.
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Precondition Constrained-Gradient Descent (PCGD)

1
minimize  J(z) = §<Z,HZ>

subject to z € M
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Precondition Constrained-Gradient Descent (PCGD)

1
minimize  J(z) = §<Z,HZ>

subject to z € M

Similar in spirit to a projection-based Newton method developed by J. Hauser 2

2Hauser, J. (2002). A projection operator approach to the optimization of trajectory
functionals. IFAC Proceedings Volumes, 35(1), 377-382.
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Precondition Constrained-Gradient Descent (PCGD)

1
minimize  J(z) = §<Z,HZ>

subject to z € M

Similar in spirit to a projection-based Newton method developed by J. Hauser 2

Two Key ideas:

— Two different types of projections
— Preconditioning the state-control space (z-space)

2Hauser, J. (2002). A projection operator approach to the optimization of trajectory
functionals. IFAC Proceedings Volumes, 35(1), 377-382.
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Key ldea 1: Projections...
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subject to z € M
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Key ldea 1: Projections...

minizmize J(z) = %(z,z> (H=1)

subject to z € M

//M
)
\—/ M: Dynamical Constraints Manifold

O

Maurice Filo (UCSB) ACC 2018 June 28, 2018 4/9



Key ldea 1: Projection

J(2)

minimize
z

subject to z € M

// M

N
—Level sets of
J(2) =1z, 2)
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Key ldea 1: Projections...

J(2)

minimize
z
subject to z € M

x
1al Solution M

S

“ =T evel sets of
J(2) =1z, 2)
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Key ldea 1: Projections...

1
minimize  J(z) = §<z,z> (H=1)
subject to z € M

x

Optifnal Solution . V/M
\J\J M: Dynamical Constraints Manifold
AN

Y Initial Guess

“ =T evel sets of
J(2) =1z, 2)
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Key ldea 1: Projections...

1
minimize  J(z) = §<z,z> (H=1)
subject to z € M

x

Optial Solution /M
2k M: Dynamical Constraints Manifold

S

k™ iteration

LA
—Level >(“ts of

J(z) =5(z, 2)
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Key ldea 1: Projections...

1
minimize  J(z) = §<z,z> (H=1)
subject to z € M

x

Optifnal Solution v/'/\/l
2k M: Dynamical Constraints Manifold

0J: Gradient at Current lteration
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Key ldea 1: Projections...

minizmize J(z) = %(z,z> (H=1)

subject to z € M

x
Optimal Solution v‘/'/\/l
/ 2k 7 @ M: Dynamical Constraints Manifold
B T. M
—< o @ 0OJy: Gradient at Current Iteration
——0J), = —z
] T, M: Tangent Space of M at z
o
u
o
o

T " —=Level sets of
- J(2) =3(z,2)
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Key ldea 1: Projections...

1
minimize  J(z) = §<z,z> (H=1)
subject to z € M

x

Optifnal Solution M

¥
/ 21 7 @ M: Dynamical Constraints Manifold
Ny, m(=0Jp) 1~ - T, M

——0J = —2z;

@ 0OJ: Gradient at Current lteration

@ T, M: Tangent Space of M at zj,

u "] HT%JM: Linear Tangent Space Projection Operator

‘ o
~—Level sets of

| J(z) =5(2,2)
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Key ldea 1: Projections...

1
minimize  J(z) = §<z,z> (H=1)
subject to z € M

x

Optifnal Solution M

¥
/ 21 7 @ M: Dynamical Constraints Manifold
Ny, m(=0Jp) 1~ - T, M

——0J = —2z;

0J: Gradient at Current lteration

'[3;‘ M: Tangent Space of M at zj,

12k — gl '.)'/’*u‘ HT%JM: Linear Tangent Space Projection Operator

.. Step size at current iteration

~~evel sets of

J(z) =5(z, 2)
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Key ldea 1: Projections...

minizmize J(z) = %(z,z> (H=1)

subject to z € M

x
Optifnal Solution /M
@ M: Dynamical Constraints Manifold
!
A @ 0OJy: Gradient at Current Iteration
2k h ——0J = —z
N / \ N Pum @ T, M: Tangent Space of M at 2y,
s 12k — aullr ()’/’;1‘ "] HT%JM: Linear Tangent Space Projection Operator
NS ) ’
- @ «: Step size at current iteration
I 1 ‘ @ Paq: Nonlinear Trajectory Projection Operator
—Level sets of

J(2) =35(z, 2)
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Key ldea 1: Projections...

minizmize J(z) = %(z,z> (H=1)

subject to z € M

x
Optial Solution

/ 2%
M, pa(—0Jp)— |+t
T‘*M( [’)\x @ M: Dynamical Constraints Manifold

@ 0OJ: Gradient at Current lteration

'[3;‘ M: Tangent Space of M at zj,

HT%JM: Linear Tangent Space Projection Operator
.. Step size at current iteration

P Nonlinear Trajectory Projection Operator

Zpa1 = 2k — ayll 0J,
For Spherical Level Sets: ke k Ak Tsz( k)
2k+1 = Pm (Zky1)
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Special Case: Linear Dynamics

minimize  J(z) = %(z,z>

subject to z € M M :={z=(z,u): & = Az + Bu; z(0) = x0}

X

P VAYAN
= Tevel sets of
g \

[~ / A .
J(z) =3(%,2)
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Special Case: Linear Dynamics

minimize  J(z) = %(z,z>

subject to z € M M :={z=(z,u): & = Az + Bu; z(0) = x0}

T
Optifnal Solution

NN
N

~Tevel sets of
J(z) =5(z,2)
\ \
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Special Case: Linear Dynamics

minimize  J(z) = %(z,z>

subject to z € M M :={z=(z,u): & = Az + Bu; z(0) = x0}
T
Opti nz\l‘Suhniun

20 M
- —0Jy=—2

U

—t

~~evel sets of

~\ [/ n A\
J(z) = 3(z, 2)

Converges in one iteration with step size a = 1!
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Special Case: Linear Dynamics

minimize  J(z) = %(z,Hz) (H#1)
subject to z € M M :={z=(z,u): & = Az + Bu; z(0) = x0}
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Special Case: Linear Dynamics

minizmize J(z) = %(z,Hz) (H#1)

subject to z € M M :={z=(z,u): & = Az + Bu; z(0) = x0}

X

Ellipsoidal level sets: does not converge in one iteration!
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Key ldea 2: Preconditioning...

1
minimize  J(z) = §<Z,HZ>

subject to z € M
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Key ldea 2: Preconditioning...

1
minimize  J(z) = §<Z,HZ>

subject to z € M

Linear Transformation W: 2/ = W (=z)
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Key ldea 2: Preconditioning...

1 1
minimize  J(z) = §(z,Hz> minimize  J'(z') = §<Z/’Z/>

subject to 2z € M subject to 2 € M’

Transformation W: 2/ = W (z)

Maurice Filo (UCSB) ACC 2018 June 28, 2018 6/9



Key ldea 2: Preconditioning...

1 1
minimize  J(z) = §<Z,HZ> minimize J'(2) = §<Z/’Z/>
z 2!
subject to 2z € M subject to 2 € M’
x/

AN

> Ellipsoidal Level Sets . -Spherical Level Sets

Transformation P: 2/ = W (2)
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Key ldea 2: Preconditioning...

1 1
minimize  J(z) = §(z,Hz> minimize  J'(z') = §<Z/’Z/>

subject to 2z € M subject to 2 € M’

x/

> Ellipsoidal Level Sets ~—"" -Spherical Level Sets

":'llwl =z, — akHTz;CM’ (8‘]I/c)
Zt1 = Pmo wt (illc+1)
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Key ldea 2: Preconditioning...

1 1
minimize  J(z) = §(z,Hz> minimize  J'(z') = §<Z/’Z/>

subject to 2z € M subject to 2 € M’

x/

AN

> Ellipsoidal Level Sets . -Spherical Level Sets

k1 = 2k — oyl M (H'0J) B =2 — ally, pr (0.J7)
Zkr1 = Pm(Zr11) Zk1=PpmoW™! (73/,g+1)
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Key ldea 2: Preconditioning...

1
minimize  J(z) = §<Z,HZ>

subject to z € M

o
Optimal Solution HTA.M(731.> M
T aa =

\fol \

7H7‘0J/. = —z

- H N
=z, —oglly (2

2k+1 = 2L — akHQI{kM (H_](?Jk)

21 = Pm(Ze+1)
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Computational Load

minimize J(z)z%(z,Hz) = [Q 0]

subject to  &(t) = f(x(t),u(t)); x(0) = zo
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Computational Load

L 1 1@ 0
minimize J(z) = §<Z,HZ> H := [0 R]
subject to  &(t) = f(x(t),u(t)); x(0) = zo
Zk11 = 2k + Qg Zk; Zr = —H%kM (HilaJk)

PCGD : )
Zer1 = Pm(Zk41)
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Computational Load

L 1 1@ 0
minimize J(z) = §<Z,HZ> H := [0 R]
subject to  &(t) = f(x(t),u(t)); x(0) = zo
Zk11 = 2k + Qg Zk; Zr = —H%kM (H’lf)Jk)

PCGD : )
Zer1 = Pm(Zk41)

° H%kM : Solve a linear two point boundary value problem for Zj, := (%, )
2 b R e e Lo B v R S
dt [ Mg -Q —Aj Ak Qx| | M(T)
Up = — <uk + RilBZS\k>
where Ay := 0, f(xk,ux) and By := Oy f(xk, uk)
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Computational Load

minimize J(z)z%(z,Hz) = [Q 0]

subject to  &(t) = f(x(t),u(t)); x(0) = zo

Zka1 = 2k + QpZy; Zr = T4 Hilajk
PCGD : { - ) 7o )
Zk+1 = Prm(Zk11)
° HﬁkM : Solve a linear two point boundary value problem

@ Par(Zk+1): Solve the system dynamics
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Computational Load

minimize J(z)z%(z,Hz) = [Q 0]

subject to  &(t) = f(x(t),u(t)); x(0) = zo
- {2k+1 =2k + f“kgld Zk = —HﬁkM (H'0.Jy)
zkt1 = Pm(Zrt1)
° HﬁkM : Solve a linear two point boundary value problem

@ Par(Zk+1): Solve the system dynamics
@ No Costate Equation!
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Computational Load

minimize J(z)z%(z,Hz) = [Q 0]

subject to  &(t) = f(x(t),u(t)); x(0) = zo
Zka1 = 2k + QpZy; Zr = T4 Hilajk
PCGD : { i ) 7 )
zkt1 = Pm(Zrt1)
° HﬁkM : Solve a linear two point boundary value problem
@ Par(Zk+1): Solve the system dynamics
@ No Costate Equation!

@ No second derivatives of the dynamics!
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Example: Comparison with the Standard Gradient Descent

minimize  J(z,u) = 1

o 2/0 [[¥(t)* Qu(t)| + Ru(t)] dt

subject to ih%w(t) = [Ho + Vu()¥(t); +(0) =10

0 0 o0 0 1032 1 00
Ho=10 05 0]; v=]1 0 095; Q=10 1 0|; R=h=1
0 0 17 0.32 0.95 0 0 0

0

2Grivopoulos, Symeon. Optimal control of quantum systems. University of
California, Santa Barbara, 2005.
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Example: Comparison with the Standard Gradient Descent

mir;imize J(z,u) = %/0 [[¥(t)* Qu(t)| + Ru(t)] dt

subject to ih%w(t) = [Ho + Vu()¥(t); +(0) =10

0 0 o0 0 1032 1 00
Ho=10 05 0]; v=]1 0 095; Q=10 1 0|; R=h=1
0 0 0

0 0 1.7 0.32 0.95 0
10°

P

N GD
3100 | - PCGD|]
=10)

)

0 50 100

Iteration Number

2Grivopoulos, Symeon. Optimal control of quantum systems. University of

California, Santa Barbara, 2005.
June 28,2018 8/9
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Concluding Remarks & Future Work

@ PCGD can be shown to be a Quasi-Newton method

@ PCGD inherits attractive properties of both first and second order
methods:

o Guaranteed to converge to a local minimum
o Exhibits fast convergence rate near the optimum

Future work: How to include inequality constraints?
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Concluding Remarks & Future Work

@ PCGD can be shown to be a Quasi-Newton method

@ PCGD inherits attractive properties of both first and second order
methods:

o Guaranteed to converge to a local minimum
o Exhibits fast convergence rate near the optimum

Future work: How to include inequality constraints?

Thank you
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