Investigating Cochlear Instabilities Using Structured Stochastic Uncertainty

Maurice Filo

University of California, Santa Barbara *filo@umail.ucsb.edu* Advisor: Bassam Bamieh

CDC 2017, Melbourne

Overview

Brief Physiology

- Features of Cochlear Response
 - Frequency to Location Mapping
 - Wide Dynamic Range
 - Cochlear Instabilities

Oterministic & Stochastic Biomechanical Models

- Stochastic Biomechanical Models in the Literature
- 5 Mean-Square Stability Analysis
 - 6 Results
 - 7 Conclusion & Future Work

Brief Physiology, the Ear

Source: Introduction to Psychology 1.0.1 - FlatWorld

Brief Physiology, the Ear

Source: Introduction to Psychology 1.0.1 - FlatWorld

Source: http://www.byronshvhearing.com/

Brief Physiology, the Cochlea

Cochlea is simply a mechanical spectrum analyzer

Source: Biophysical Parameters Modification Could Overcome Essential Hearing Gaps

Cochlear Response, Frequency-Location Mapping

Cochlear Response, Frequency-Location Mapping

Cochlear Response, Frequency-Location Mapping

Cochlear Response, Wide Dynamic Range

Wide Dynamic Range: More than 120 dB in Sound Pressure Level (SPL)

Cochlear Response, Wide Dynamic Range

Wide Dynamic Range: More than 120 dB in Sound Pressure Level (SPL)

A feedback mechanism that amplifies small inputs

 \rightarrow but pushes the dynamics to the edge of stability!

Two tones simultaneously: $\rightarrow f_{Low}$: fixed $\rightarrow f_{High}$: time-varying

Two tones simultaneously: $\rightarrow f_{Low}$: fixed $\rightarrow f_{High}$: time-varying

Two tones simultaneously: $\rightarrow f_{Low}$: fixed $\rightarrow f_{High}$: time-varying

Spontaneous Response: Cochlear Instabilities

The ear is an active device that can produce sound!

• Spontaneous Otoacoustic Emissions (SOAE) (Not necessarily perceived)

Spontaneous Response: Cochlear Instabilities

The ear is an active device that can produce sound!

• Spontaneous Otoacoustic Emissions (SOAE) (Not necessarily perceived)

 Tinnitus: Symptoms of Hearing Loss Diseases (Perceived as harsh and consistent ringing)

Spontaneous Response: Cochlear Instabilities

 \longrightarrow Can be modeled as instabilities in stochastic cochlear dynamics...

• Spontaneous Otoacoustic Emissions (SOAE) (Not necessarily perceived)

 Tinnitus: Symptoms of Hearing Loss Diseases (Perceived as harsh and consistent ringing)

A Deterministic Biomechanical Model

$$p(x,t) = -[\mathcal{M}_f \ddot{u}](x,t) - [\mathcal{M}_s \ddot{s}](x,t)$$

where:
 \mathcal{M}_f and \mathcal{M}_s are linear spatial operators

A Deterministic Biomechanical Model

 \mathcal{G} : Active Gain (small $u \rightarrow$ large gain) gives wide dynamic range

A Stochastic Biomechanical Model

$$\mathcal{G}(u)](x,t) = \frac{\gamma(x,t)}{1+\theta[\Phi_{\eta}(u^2)](x,t)}$$

 $\gamma(x,t)$: Random Field

Cochlear Instabilities, Perturbations of the Active Gain

 $\left[\mathcal{G}(u)\right](x,t) = \frac{\gamma(x)}{1 + \theta[\Phi_{\eta}(u^2)](x,t)}$

• $\gamma(x) = 1 + ilde{\gamma}(x)
ightarrow$ Eigenvalue analysis via Monte Carlo methods 1

• $\gamma(x,t)$: Random Field \rightarrow Structured Stochastic Uncertainty

¹Ku, E. M., Elliott, S. J., & Lineton, B. (2008). ²Filo, M. G. (2017), Master's Thesis, UCSB.

Structured Stochastic Uncertainty Setting

 $\mathcal{K}_{\bar{\gamma}}, \mathcal{C}_{\bar{\gamma}}$ and \mathcal{C}_0 are spatially decoupled operators and are functions of k_i, c_i and $\bar{\gamma}$.

Mean-Square Stability Conditions & Performance

- Forward block (\mathcal{M}) : causal & stable LTI system
- Feedback block: Diagonal, temporally independent but possibly spatially correlated: $\mathbb{E}[\tilde{\gamma}(x,t)\tilde{\gamma}(\xi,\tau)] = \Gamma(x,\xi)\delta(t-\tau)$

Mean-Square Stability Conditions & Performance

- Forward block (\mathcal{M}) : causal & stable LTI system
- Feedback block: Diagonal, temporally independent but possibly spatially correlated: $\mathbb{E}[\tilde{\gamma}(x,t)\tilde{\gamma}(\xi,\tau)] = \Gamma(x,\xi)\delta(t-\tau)$

Definition: $MSS \iff$ covariances of all signals remain bounded for all time

Mean-Square Stability Conditions & Performance

- Forward block (\mathcal{M}) : causal & stable LTI system
- Feedback block: Diagonal, temporally independent but possibly spatially correlated: $\mathbb{E}[\tilde{\gamma}(x,t)\tilde{\gamma}(\xi,\tau)] = \Gamma(x,\xi)\delta(t-\tau)$

Definition: **MSS** \iff covariances of all signals remain bounded for all time *Questions:*

- Conditions on $\Gamma(x,\xi)$ that guarantee MSS?
- If MSS is violated, how do covariances grow?

 \rightarrow Discrete time setting: Bamieh, B (2012), Structured stochastic uncertainty

 \rightarrow Continuous time setting: in preparation

Covariance Evolution & Loop Gain Operator

Covariance Evolution & Loop Gain Operator

Steady State Covariances

Covariance Evolution & Loop Gain Operator

Steady State Covariances

Loop Gain Operator: $\mathbb{L}: \bar{\mathcal{P}}_{in} \to \bar{\mathcal{P}}_{out}$

- MSS condition: $\rho(\mathbb{L}) < 1$
- Worst-case covariance: $\mathbb{L}(\mathbf{P}) = \rho(\mathbb{L})\mathbf{P}$

MSS Analysis of the Cochlea

$$\begin{split} \gamma(x,t) &= \bar{\gamma}(x) + \tilde{\gamma}(x,t) \qquad \text{Expectation:} \qquad \mathbb{E}\left[\gamma(x,t)\right] = \bar{\gamma}(x) \\ \text{Covariance:} \qquad \mathbb{E}\left[\tilde{\gamma}(x,t)\tilde{\gamma}(\xi,\tau)\right] &= \frac{\epsilon^2}{\lambda\sqrt{2\pi}}e^{\frac{(x-\xi)^2}{2\lambda^2}}\delta(t-\tau) \end{split}$$

 $U(x,\xi)$: worst case covariance of the basilar membrane displacement u(x,t)

MSS Analysis of the Cochlea

$$\begin{split} \gamma(x,t) &= \bar{\gamma}(x) + \tilde{\gamma}(x,t) \qquad \text{Expectation:} \qquad \mathbb{E}\left[\gamma(x,t)\right] = \bar{\gamma}(x) \\ \text{Covariance:} \qquad \mathbb{E}\left[\tilde{\gamma}(x,t)\tilde{\gamma}(\xi,\tau)\right] &= \frac{\epsilon^2}{\lambda\sqrt{2\pi}}e^{\frac{(x-\xi)^2}{2\lambda^2}}\delta(t-\tau) \end{split}$$

 $U(x,\xi)$: worst case covariance of the basilar membrane displacement u(x,t)

MSS Analysis of the Cochlea

$$\begin{split} \gamma(x,t) &= \bar{\gamma}(x) + \tilde{\gamma}(x,t) \qquad \text{Expectation:} \qquad \mathbb{E}\left[\gamma(x,t)\right] = \bar{\gamma}(x) \\ \text{Covariance:} \qquad \mathbb{E}\left[\tilde{\gamma}(x,t)\tilde{\gamma}(\xi,\tau)\right] &= \frac{\epsilon^2}{\lambda\sqrt{2\pi}}e^{\frac{(x-\xi)^2}{2\lambda^2}}\delta(t-\tau) \end{split}$$

 $U(x,\xi)$: worst case covariance of the basilar membrane displacement u(x,t)

Stochastic Simulation of the Nonlinear Cochlear Dynamics

Stochastic Simulation of the Nonlinear Cochlear Dynamics

Stochastic Simulation of the Nonlinear Cochlear Dynamics

No significant difference: Nonlinearity only saturates the unstable response!

Conclusion & Future Work

Key Messages:

- Cochlear models are extremely sensitive to stochastic perturbations
- Structured stochastic uncertainty is a suitable framework for MSS analysis of the cochlea
- Various stochastic uncertainties in the cochlea are possible sources for cochlear instabilities such as SOAEs and tinnitus.

Future Directions:

- Develop the theory for structured stochastic uncertainty in continuous-time (Itō, Stratonovich, ...)
- Uncertainties in different cochlear parameters (such as fluid density)
- Suppressing undesired instabilities such as tinnitus

Questions?