Optimal Parameter Tuning of Feedback Controllers with Application to Biomolecular Antithetic Integral Control

#### Maurice Filo, Mustafa Khammash

Department of Biosystems Science and Engineering, ETHz

December 11, 2019



Arbitrary plant in feedback with Antithetic Integral Controller (AIC)<sup>1</sup>



<sup>1</sup>Briat, C., Gupta, A., & Khammash, M. (2016). Antithetic integral feedback ensures robust perfect adaptation in noisy biomolecular networks. Cell systems, 2(1), 15-26.

M. Filo, M. Khammash (ETHz)



| $\mathcal{R}_r$ : Reference Reaction     | $\phi \xrightarrow{\mu} Z_1$                               |
|------------------------------------------|------------------------------------------------------------|
| $\mathcal{R}_s$ : Sensing Reaction       | $X_n \xrightarrow{\theta} X_n + Z_2$                       |
| $\mathcal{R}_q$ : Sequestration Reaction | $Z_1 + Z_2 \xrightarrow{\eta} \phi$                        |
| $\mathcal{R}_a$ : Actuation Reaction     | $\mathbf{Z}_1 \xrightarrow{k} \mathbf{Z}_1 + \mathbf{X}_1$ |



| $\mathcal{R}_r$ : Reference Reaction     | $\phi \xrightarrow{\mu} Z_1$                                    |
|------------------------------------------|-----------------------------------------------------------------|
| $\mathcal{R}_s$ : Sensing Reaction       | $\mathbf{X}_n \xrightarrow{\theta} \mathbf{X}_n + \mathbf{Z}_2$ |
| $\mathcal{R}_q$ : Sequestration Reaction | $Z_1 + Z_2 \xrightarrow{\eta} \phi$                             |
| $\mathcal{R}_a$ : Actuation Reaction     | $Z_1 \xrightarrow{k} Z_1 + X_1$                                 |

 $S = \begin{bmatrix} \mathcal{R}_{p} & \mathcal{R}_{r} \mathcal{R}_{s} & \mathcal{R}_{q} & \mathcal{R}_{a} \\ * & \cdots & * & 0 & 0 & 0 & 1 \\ * & \cdots & * & 0 & 0 & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ * & \cdots & * & 0 & 0 & 0 & 0 \\ \hline 0 & \cdots & 0 & 1 & 0 & -1 & 0 \\ 0 & \cdots & 0 & 0 & 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} X_{1} \\ X_{2} \\ \vdots \\ X_{n} \\ Z_{1} \\ Z_{2} \end{bmatrix} \qquad \omega(x, z) = \begin{bmatrix} * \\ \vdots \\ * \\ \mathcal{R}_{p} \\ \mathcal{R$ 



| $\mathcal{R}_r$ : Reference Reaction     | $\phi \xrightarrow{\mu} Z_1$         |
|------------------------------------------|--------------------------------------|
| $\mathcal{R}_s$ : Sensing Reaction       | $X_n \xrightarrow{\theta} X_n + Z_2$ |
| $\mathcal{R}_q$ : Sequestration Reaction | $Z_1 + Z_2 \xrightarrow{\eta} \phi$  |
| $\mathcal{R}_a$ : Actuation Reaction     | $Z_1 \xrightarrow{k} Z_1 + X_1$      |
|                                          |                                      |





**Deterministic Setting** 



| $\mathcal{R}_r$ : Reference Reaction     | $\phi \xrightarrow{\mu} Z_1$                                    |
|------------------------------------------|-----------------------------------------------------------------|
| $\mathcal{R}_s$ : Sensing Reaction       | $\mathbf{X}_n \xrightarrow{\theta} \mathbf{X}_n + \mathbf{Z}_2$ |
| $\mathcal{R}_q$ : Sequestration Reaction | $Z_1 + Z_2 \xrightarrow{\eta} \phi$                             |
| $\mathcal{R}_a$ : Actuation Reaction     | $Z_1 \xrightarrow{k} Z_1 + X_1$                                 |





#### **Deterministic Setting** ODE: $x_i, z_i \rightarrow \text{concentrations}$



| $\mathcal{R}_r$ : Reference Reaction     | $\phi \xrightarrow{\mu} Z_1$                                    |
|------------------------------------------|-----------------------------------------------------------------|
| $\mathcal{R}_s$ : Sensing Reaction       | $\mathbf{X}_n \xrightarrow{\theta} \mathbf{X}_n + \mathbf{Z}_2$ |
| $\mathcal{R}_q$ : Sequestration Reaction | $Z_1 + Z_2 \xrightarrow{\eta} \phi$                             |
| $\mathcal{R}_a$ : Actuation Reaction     | $Z_1 \xrightarrow{k} Z_1 + X_1$                                 |

$$S = \begin{bmatrix} \mathcal{R}_p & \mathcal{R}_r \mathcal{R}_* \mathcal{R}_q & \mathcal{R}_q \\ * & \cdots & * & 0 & 0 & 0 & 1 \\ * & \cdots & * & 0 & 0 & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ * & \cdots & * & 0 & 0 & 0 & 0 \\ \hline 0 & \cdots & 0 & 1 & 0 & -1 & 0 \\ \hline 0 & \cdots & 0 & 0 & 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} \mathcal{X}_1 \\ \mathcal{X}_1 \\ \mathcal{Z}_2 \\ \mathcal{Z}_2 \end{bmatrix}$$



#### **Deterministic Setting** ODE: $x_i, z_j \rightarrow$ concentrations d

$$\frac{d}{dt}z_1 = \mu - \eta z_1 z_2$$
$$\frac{d}{dt}z_2 = \theta x_n - \eta z_1 z_2$$



| $\mathcal{R}_r$ : Reference Reaction     | $\phi \xrightarrow{\mu} Z_1$                                    |
|------------------------------------------|-----------------------------------------------------------------|
| $\mathcal{R}_s$ : Sensing Reaction       | $\mathbf{X}_n \xrightarrow{\theta} \mathbf{X}_n + \mathbf{Z}_2$ |
| $\mathcal{R}_q$ : Sequestration Reaction | $Z_1 + Z_2 \xrightarrow{\eta} \phi$                             |
| $\mathcal{R}_a$ : Actuation Reaction     | $Z_1 \xrightarrow{k} Z_1 + X_1$                                 |





#### **Deterministic Setting** ODE: $x_i, z_j \rightarrow \text{concentrations}$

$$\frac{d}{dt}z_1 = \mu - \eta z_1 z_2$$
$$\frac{d}{dt}z_2 = \theta x_n - \eta z_1 z_2$$

$$\stackrel{\text{Stability}}{\Longrightarrow} \lim_{t \to \infty} x_n(t) = \frac{\mu}{\theta}$$

M. Filo, M. Khammash (ETHz)



| $\mathcal{R}_r$ : Reference Reaction     | $\phi \xrightarrow{\mu} Z_1$                                    |
|------------------------------------------|-----------------------------------------------------------------|
| $\mathcal{R}_s$ : Sensing Reaction       | $\mathbf{X}_n \xrightarrow{\theta} \mathbf{X}_n + \mathbf{Z}_2$ |
| $\mathcal{R}_q$ : Sequestration Reaction | $Z_1 + Z_2 \xrightarrow{\eta} \phi$                             |
| $\mathcal{R}_a$ : Actuation Reaction     | $Z_1 \xrightarrow{k} Z_1 + X_1$                                 |





#### **Deterministic Setting** ODE: $x_i, z_j \rightarrow \text{concentrations}$

$$\frac{d}{dt}z_1 = \mu - \eta z_1 z_2$$
$$\frac{d}{dt}z_2 = \theta x_n - \eta z_1 z_2$$

Stability

$$\stackrel{\text{tability}}{\Longrightarrow} \lim_{t \to \infty} x_n(t) = \frac{\mu}{\theta} \quad \text{RPA} \checkmark$$

M. Filo, M. Khammash (ETHz)



| $\phi \xrightarrow{\mu} Z_1$         |
|--------------------------------------|
| $X_n \xrightarrow{\theta} X_n + Z_2$ |
| $Z_1 + Z_2 \xrightarrow{\eta} \phi$  |
| $Z_1 \xrightarrow{k} Z_1 + X_1$      |
|                                      |





**Deterministic Setting** ODE:  $x_i, z_j \rightarrow \text{concentrations}$ 

$$rac{d}{dt}z_1 = \mu - \eta z_1 z_2$$
 $rac{d}{dt}z_2 = heta x_n - \eta z_1 z_2$ 

Stability

$$\Longrightarrow \lim_{t \to \infty} x_n(t) = \frac{\mu}{\theta} \operatorname{RPA} \checkmark$$

M. Filo, M. Khammash (ETHz)

**Stochastic Setting** 



| $\mathcal{R}_r$ : Reference Reaction     | $\phi \xrightarrow{\mu} Z_1$         |
|------------------------------------------|--------------------------------------|
| $\mathcal{R}_s$ : Sensing Reaction       | $X_n \xrightarrow{\theta} X_n + Z_2$ |
| $\mathcal{R}_q$ : Sequestration Reaction | $Z_1 + Z_2 \xrightarrow{\eta} \phi$  |
| $\mathcal{R}_a$ : Actuation Reaction     | $Z_1 \xrightarrow{k} Z_1 + X_1$      |

|     |               | $\mathcal{R}_p$ |   | $\mathcal{R}_r$ | $\mathcal{R}_s$ | $\mathcal{R}_q$ | $\mathcal{R}_a$ |                   |   |
|-----|---------------|-----------------|---|-----------------|-----------------|-----------------|-----------------|-------------------|---|
|     | ۲*            |                 | * | 0               | 0               | 0               | 1]              | $X_1$             |   |
|     | *             |                 | * | 0               | 0               | 0               | 0               | $X_2$             |   |
| S = |               | ·               | 1 | :               |                 | :               |                 | ÷                 | L |
|     | $\frac{*}{0}$ |                 | 0 | $\frac{0}{1}$   | 0               | -1              | 0               | $Z_1^{\Lambda_n}$ |   |
|     | 0             | • • •           | 0 | 0               | 1               | -1              | 0               | $Z_2$             |   |



**Deterministic Setting** ODE:  $x_i, z_j \rightarrow \text{concentrations}$   $\frac{d}{dt}z_1 = \mu - \eta z_1 z_2$   $\frac{d}{dt}z_2 = \theta x_n - \eta z_1 z_2$  **Stability**  $\underset{t \rightarrow \infty}{\overset{\text{Stability}}{\longrightarrow}} \lim_{t \rightarrow \infty} x_n(t) = \frac{\mu}{\theta} \text{ RPA }\checkmark$  Stochastic Setting CTMC:  $X_i, Z_j \to \text{copy } \#$ 



| $\mathcal{R}_r$ : Reference Reaction     | $\phi \xrightarrow{\mu} Z_1$         |
|------------------------------------------|--------------------------------------|
| $\mathcal{R}_s$ : Sensing Reaction       | $X_n \xrightarrow{\theta} X_n + Z_2$ |
| $\mathcal{R}_q$ : Sequestration Reaction | $Z_1 + Z_2 \xrightarrow{\eta} \phi$  |
| $\mathcal{R}_a$ : Actuation Reaction     | $Z_1 \xrightarrow{k} Z_1 + X_1$      |

|     |              | $\kappa_p$ |                  | $\kappa_r$                 | $\kappa_s$ | $\kappa_q$                                               | $\kappa_a$                                                        |                                                                                                                  |                 |                                                                                         |      |
|-----|--------------|------------|------------------|----------------------------|------------|----------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------|------|
| S = | *<br>::<br>• | ···p       | *<br>*<br>*<br>0 | 0<br>0<br>:<br>0<br>1<br>0 |            | $ \begin{array}{c}                                     $ | $ \begin{array}{c} 1\\0\\\vdots\\0\\0\\0\end{array} \end{array} $ | $\begin{array}{c} \mathbf{X}_1\\ \mathbf{X}_2\\ \vdots\\ \mathbf{X}_n\\ \mathbf{Z}_1\\ \mathbf{Z}_2 \end{array}$ | $\omega(x,z) =$ | $ \begin{array}{c} * \\ \vdots \\ \\ \mu \\ \theta \\ \eta z_1 z_2 \\ l_2 \end{array} $ | RRRR |
|     |              |            |                  |                            |            |                                                          |                                                                   |                                                                                                                  |                 | 10                                                                                      | 110  |

**Deterministic Setting** ODE:  $x_i, z_j \rightarrow \text{concentrations}$   $\frac{d}{dt}z_1 = \mu - \eta z_1 z_2$   $\frac{d}{dt}z_2 = \theta x_n - \eta z_1 z_2$  **Stability**  $\Longrightarrow \lim_{t \rightarrow \infty} x_n(t) = \frac{\mu}{\theta} \text{ RPA } \checkmark$  Stochastic Setting CTMC:  $X_i, Z_j \to \text{copy } \#$   $\frac{d}{dt} \mathbb{E} [Z_1] = \mu - \eta \mathbb{E} [Z_1 Z_2]$  $\frac{d}{dt} \mathbb{E} [Z_2] = \theta \mathbb{E} [X_n] - \eta \mathbb{E} [Z_1 Z_2]$ 



| $\mathcal{R}_r$ : Reference Reaction     | $\phi \xrightarrow{\mu} Z_1$         |
|------------------------------------------|--------------------------------------|
| $\mathcal{R}_s$ : Sensing Reaction       | $X_n \xrightarrow{\theta} X_n + Z_2$ |
| $\mathcal{R}_q$ : Sequestration Reaction | $Z_1 + Z_2 \xrightarrow{\eta} \phi$  |
| $\mathcal{R}_a$ : Actuation Reaction     | $Z_1 \xrightarrow{k} Z_1 + X_1$      |

|     |                  | $\kappa_p$         |                       | $\kappa_r$                 | $\kappa_s$                 | $\kappa_q$                                                         | $\kappa_a$                 |                                                                                                                  |                 |                                                                                 |                                                             |
|-----|------------------|--------------------|-----------------------|----------------------------|----------------------------|--------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------|-------------------------------------------------------------|
| S = | *<br>:<br>*<br>0 | ····<br>···<br>··· | *<br>*<br>*<br>*<br>0 | 0<br>0<br>:<br>0<br>1<br>0 | 0<br>0<br>:<br>0<br>0<br>1 | $ \begin{array}{c} 0 \\ 0 \\ \vdots \\ 0 \\ -1 \\ -1 \end{array} $ | 1<br>0<br>:<br>0<br>0<br>0 | $\begin{array}{c} \mathbf{X}_1\\ \mathbf{X}_2\\ \vdots\\ \mathbf{X}_n\\ \mathbf{Z}_1\\ \mathbf{Z}_2 \end{array}$ | $\omega(x,z) =$ | $\begin{bmatrix} * \\ \vdots \\ * \\ \theta \\ \eta z_1 z_2 \\ k \end{bmatrix}$ | $\mathcal{R}_{p}$<br>$\mathcal{R}_{r}$<br>$\mathcal{R}_{r}$ |
|     |                  |                    |                       |                            |                            |                                                                    |                            |                                                                                                                  |                 |                                                                                 | 1.0.0.0                                                     |

**Deterministic Setting** ODE:  $x_i, z_j \rightarrow \text{concentrations}$   $\frac{d}{dt}z_1 = \mu - \eta z_1 z_2$   $\frac{d}{dt}z_2 = \theta x_n - \eta z_1 z_2$ Stability  $\Longrightarrow \lim_{t \rightarrow \infty} x_n(t) = \frac{\mu}{\theta} \text{ RPA } \checkmark$  Stochastic Setting CTMC:  $X_i, Z_j \to \text{copy } \#$   $\frac{d}{dt} \mathbb{E} [Z_1] = \mu - \eta \mathbb{E} [Z_1 Z_2]$   $\frac{d}{dt} \mathbb{E} [Z_2] = \theta \mathbb{E} [X_n] - \eta \mathbb{E} [Z_1 Z_2]$ Ergodicity  $\underset{t \to \infty}{\longrightarrow} \mathbb{E} [X_n(t)] = \frac{\mu}{\theta}$ 



| $\mathcal{R}_r$ : Reference Reaction     | $\phi \xrightarrow{\mu} Z_1$         |
|------------------------------------------|--------------------------------------|
| $\mathcal{R}_s$ : Sensing Reaction       | $X_n \xrightarrow{\theta} X_n + Z_2$ |
| $\mathcal{R}_q$ : Sequestration Reaction | $Z_1 + Z_2 \xrightarrow{\eta} \phi$  |
| $\mathcal{R}_a$ : Actuation Reaction     | $Z_1 \xrightarrow{k} Z_1 + X_1$      |

| $S = \begin{bmatrix} * & \cdots & * &   & 0 & 0 & 0 & 1 \\ * & \cdots & * & 0 & 0 & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ * & \cdots & * & 0 & 0 & 0 & 0 \\ \hline 0 & \cdots & 0 & 1 & 0 & -1 & 0 \\ \hline 0 & \cdots & 0 & 1 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \\ Z_1 \end{bmatrix} \qquad \omega(x, z) = \begin{bmatrix} * \\ \vdots \\ \mu \\ \eta \\ \eta \\ \eta \\ z_2 \\ z_1 \end{bmatrix}$ |     |             | $\kappa_p$         |                       | $\kappa_r$                                                                                                   | $\kappa_s$                 | $\kappa_q$                                                         | $\kappa_a$                 |                                                                          |                 |                                                                                 |                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------|--------------------|-----------------------|--------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------|-------------------------------------------------------------|
| $\begin{bmatrix} 0 & \cdots & 0 & 0 & 1 & -1 & 0 \end{bmatrix} Z_2$                                                                                                                                                                                                                                                                                                                                                                                                          | S = | *<br>*<br>0 | ····<br>··.<br>··· | *<br>:<br>*<br>0<br>0 | $     \begin{array}{c}       0 \\       0 \\       \vdots \\       0 \\       1 \\       0     \end{array} $ | 0<br>0<br>:<br>0<br>0<br>1 | $ \begin{array}{c} 0 \\ 0 \\ \vdots \\ 0 \\ -1 \\ -1 \end{array} $ | 1<br>0<br>:<br>0<br>0<br>0 | $\begin{array}{c} X_1 \\ X_2 \\ \vdots \\ X_n \\ Z_1 \\ Z_2 \end{array}$ | $\omega(x,z) =$ | $\begin{bmatrix} * \\ \vdots \\ & \\ \theta \\ \eta z_1 z_2 \\ k \end{bmatrix}$ | $\mathcal{R}_{F}$<br>$\mathcal{R}_{I}$<br>$\mathcal{R}_{I}$ |

**Deterministic Setting** ODE:  $x_i, z_i \rightarrow \text{concentrations}$  $\frac{d}{dt}z_1 = \mu - \eta z_1 z_2$  $\frac{d}{dt}z_2 = \theta x_n - \eta z_1 z_2$  $\lim_{t \to \infty} x_n(t) = \frac{\mu}{\theta} \quad \text{RPA} \checkmark$ Stability

Stochastic Setting CTMC:  $X_i, Z_j \rightarrow \text{copy } \#$  $\frac{d}{dt}\mathbb{E}\left[Z_{1}\right] = \mu - \eta\mathbb{E}\left[Z_{1}Z_{2}\right]$  $\frac{d}{dt}\mathbb{E}\left[Z_{2}\right] = \theta\mathbb{E}\left[X_{n}\right] - \eta\mathbb{E}\left[Z_{1}Z_{2}\right]$  $\lim_{t \to \infty} \mathbb{E} \left[ X_n(t) \right] = \frac{\mu}{\theta} \quad \text{RPA} \checkmark$ Ergodicity 1/11



| $\mathcal{R}_r$ : Reference Reaction     | $\phi \xrightarrow{\mu} Z_1$         |
|------------------------------------------|--------------------------------------|
| $\mathcal{R}_s$ : Sensing Reaction       | $X_n \xrightarrow{\theta} X_n + Z_2$ |
| $\mathcal{R}_q$ : Sequestration Reaction | $Z_1 + Z_2 \xrightarrow{\eta} \phi$  |
| $\mathcal{R}_a$ : Actuation Reaction     | $Z_1 \xrightarrow{k} Z_1 + X_1$      |

#### Deterministic Response



M. Filo, M. Khammash (ETHz)



| $\mathcal{R}_r$ : Reference Reaction     | $\phi \xrightarrow{\mu} Z_1$                               |
|------------------------------------------|------------------------------------------------------------|
| $\mathcal{R}_s$ : Sensing Reaction       | $X_n \xrightarrow{\theta} X_n + Z_2$                       |
| $\mathcal{R}_q$ : Sequestration Reaction | $Z_1 + Z_2 \xrightarrow{\eta} \phi$                        |
| $\mathcal{R}_a$ : Actuation Reaction     | $\mathbf{Z}_1 \xrightarrow{k} \mathbf{Z}_1 + \mathbf{X}_1$ |



| $\mathcal{R}_r$ : Reference Reaction     | $\phi \xrightarrow{\mu} Z_1$                               |
|------------------------------------------|------------------------------------------------------------|
| $\mathcal{R}_s$ : Sensing Reaction       | $X_n \xrightarrow{\theta} X_n + Z_2$                       |
| $\mathcal{R}_q$ : Sequestration Reaction | $Z_1 + Z_2 \xrightarrow{\eta} \phi$                        |
| $\mathcal{R}_a$ : Actuation Reaction     | $\mathbf{Z}_1 \xrightarrow{k} \mathbf{Z}_1 + \mathbf{X}_1$ |



| $\mathcal{R}_r$ : Reference Reaction     | $\phi \xrightarrow{\mu} Z_1$                                    |
|------------------------------------------|-----------------------------------------------------------------|
| $\mathcal{R}_s$ : Sensing Reaction       | $\mathbf{X}_n \xrightarrow{\theta} \mathbf{X}_n + \mathbf{Z}_2$ |
| $\mathcal{R}_q$ : Sequestration Reaction | $Z_1 + Z_2 \xrightarrow{\eta} \phi$                             |
| $\mathcal{R}_a$ : Actuation Reaction     | $\mathbf{Z}_1 \xrightarrow{k} \mathbf{Z}_1 + \mathbf{X}_1$      |





| $\mathcal{R}_r$ : Reference Reaction     | $\phi \xrightarrow{\mu} Z_1$         |
|------------------------------------------|--------------------------------------|
| $\mathcal{R}_s$ : Sensing Reaction       | $X_n \xrightarrow{\theta} X_n + Z_2$ |
| $\mathcal{R}_q$ : Sequestration Reaction | $Z_1 + Z_2 \xrightarrow{\eta} \phi$  |
| $\mathcal{R}_a$ : Actuation Reaction     | $Z_1 \xrightarrow{k} Z_1 + X_1$      |

#### Deterministic Response



M. Filo, M. Khammash (ETHz)

CDC, 2019



| $\mathcal{R}_r$ : Reference Reaction     | $\phi \xrightarrow{\mu} Z_1$         |
|------------------------------------------|--------------------------------------|
| $\mathcal{R}_s$ : Sensing Reaction       | $X_n \xrightarrow{\theta} X_n + Z_2$ |
| $\mathcal{R}_q$ : Sequestration Reaction | $Z_1 + Z_2 \xrightarrow{\eta} \phi$  |
| $\mathcal{R}_a$ : Actuation Reaction     | $Z_1 \xrightarrow{k} Z_1 + X_1$      |

#### Deterministic Response



M. Filo, M. Khammash (ETHz)

CDC, 2019



| $\mathcal{R}_r$ : Reference Reaction     | $\phi \xrightarrow{\mu} Z_1$         |
|------------------------------------------|--------------------------------------|
| $\mathcal{R}_s$ : Sensing Reaction       | $X_n \xrightarrow{\theta} X_n + Z_2$ |
| $\mathcal{R}_q$ : Sequestration Reaction | $Z_1 + Z_2 \xrightarrow{\eta} \phi$  |
| $\mathcal{R}_a$ : Actuation Reaction     | $Z_1 \xrightarrow{k} Z_1 + X_1$      |





M. Filo, M. Khammash (ETHz)

CDC, 2019



- $t_{\infty}$  can be very large
- Transients can be destructive





- $t_{\infty}$  can be very large
- Transients can be destructive
- Variance can be very large





- $t_{\infty}$  can be very large
- Transients can be destructive
- Variance can be very large RPA practically destroyed



M. Filo, M. Khammash (ETHz)



- $t_{\infty}$  can be very large
- Transients can be destructive
- Variance can be very large  $\implies$  RPA practically destroyed Goal: Attempt to fix this ...





- $t_{\infty}$  can be very large
- Transients can be destructive
- ◆ Variance can be very large
   ⇒ RPA practically destroyed
   Goal: Attempt to fix this ...

• Approach 1: Optimal Parameter Tuning

• Approach 2: Control Architectures



#### **Optimization Problem Statement**



#### **Optimization Problem Statement**



Dynamically Constrained Optimization Problem

$$\begin{array}{ll} \underset{\Theta}{\operatorname{minimize}} & \mathcal{J}(y;\Theta) & \operatorname{Cost} \operatorname{Function} \\ \\ \operatorname{subject to} & \begin{cases} \dot{x}=f(x,u,w); & x(0)=x_0 \\ y=h(x) & \operatorname{Plant} \operatorname{Dynamics} \\ \dot{z}=g(z,y,v;\Theta); & z(0)=z_0 \\ u=\kappa(z,y,v;\Theta) & \operatorname{Controller} \operatorname{Dynamics} \end{cases} \end{array}$$

M. Filo, M. Khammash (ETHz)

# Conversion to an Unconstrained Optimization Problem

| Constrain       | ed Optimization                                | $\begin{array}{c} & \begin{array}{c} \text{Plant} \\ \\ u \end{array} \xrightarrow{i = f(x, u); \ x(0) = x_0} \end{array} \xrightarrow{\mathcal{J}}$ |  |  |
|-----------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| $\min_{\Theta}$ | $\mathcal{J}(y;\Theta)$                        | y = h(x)                                                                                                                                             |  |  |
| Ŭ               | $\int \dot{x} = f(x, u, w); \qquad x(0) = x_0$ | Controller<br>$\dot{z} = g(z, y; \Theta); \ z(0) = z_0$                                                                                              |  |  |
| subject to      | $\int y = h(x)$                                | $u = \kappa(z, y; \Theta)$                                                                                                                           |  |  |
|                 | $\dot{z} = g(z, y, v; \Theta);  z(0) = z_0$    |                                                                                                                                                      |  |  |
|                 | $\bigcup u = \kappa(z, y, v; \Theta)$          |                                                                                                                                                      |  |  |

# Conversion to an Unconstrained Optimization Problem

| Constrained Optimization              |                                                                                                         | Plant<br>$\dot{r} = f(r, u); r(0) = r_{r}$                                                                                                                                       |
|---------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathop{\mathrm{minimize}}_{\Theta}$ | $\mathcal{J}(y;\Theta)$                                                                                 | $\begin{array}{c} u \\ y \\ y = h(x) \end{array} \qquad $ |
| subject to                            | $\begin{cases} \dot{x} = f(x, u, w);  x(0) = x_0 \\ y = h(x) \end{cases}$                               | $\dot{z} = g(z, y; \Theta); \ z(0) = z_0$ $u = \kappa(z, y; \Theta)$                                                                                                             |
|                                       | $ \begin{cases} \dot{z} = g(z, y, v; \Theta); & z(0) = z_0 \\ u = \kappa(z, y, v; \Theta) \end{cases} $ | Nonlinear Operator $M : \Theta : \Sigma :$                                                                                                                                       |
|                                       | $y = \mathcal{M}(\Theta)$                                                                               | $\begin{cases} \dot{x} = f(x, u, w); x(0) = x_0 \\ y = h(x) \\ \dot{z} = g(z, y, v; \Theta); z(0) = z_0 \\ u = \kappa(z, y, v; \Theta) \end{cases}$                              |

# Conversion to an Unconstrained Optimization Problem



(Abstract) Unconstrained Optimization

$$\underset{\Theta \in \mathbb{R}^p}{\text{minimize}} \quad \mathcal{J}(\mathcal{M}(\Theta); \Theta) =: J(\Theta)$$

(Abstract) Unconstrained Optimization

$$\underset{\Theta \in \mathbb{R}^p}{\operatorname{minimize}} \quad \mathcal{J}(\mathcal{M}(\Theta); \Theta) =: J(\Theta)$$

#### Abstract NCO

(Abstract) Unconstrained Optimization

$$\underset{\Theta \in \mathbb{R}^p}{\text{minimize}} \quad \mathcal{J}(\mathcal{M}(\Theta); \Theta) =: J(\Theta)$$

#### Abstract NCO

 $\begin{array}{ll} \text{(Directional Derivative)} & \partial J_{\bar{\Theta}}(\tilde{\Theta}) = \langle \nabla J_{\bar{\Theta}}, \tilde{\Theta} \rangle_{\mathbb{R}^p} = 0, & \forall \tilde{\Theta} \in \mathbb{R}^p \\ \text{(Gradient)} & \nabla J_{\bar{\Theta}} = 0 \end{array}$ 

Chain Rule:  $\partial J_{\bar{\Theta}}(\tilde{\Theta})$ 

 $\left(\bar{y} := \mathcal{M}(\bar{\Theta})\right)$ 

(Abstract) Unconstrained Optimization

$$\underset{\Theta \in \mathbb{R}^p}{\operatorname{minimize}} \quad \mathcal{J}(\mathcal{M}(\Theta); \Theta) =: J(\Theta)$$

#### Abstract NCO

 $\begin{array}{ll} \text{(Directional Derivative)} & \partial J_{\bar{\Theta}}(\tilde{\Theta}) = \langle \nabla J_{\bar{\Theta}}, \tilde{\Theta} \rangle_{\mathbb{R}^p} = 0, & \forall \tilde{\Theta} \in \mathbb{R}^p \\ \text{(Gradient)} & \nabla J_{\bar{\Theta}} = 0 \end{array}$ 

Chain Rule:  $\partial J_{\bar{\Theta}}(\tilde{\Theta}) = \partial_y \mathcal{J}_{(\bar{y};\bar{\Theta})} \left( \partial \mathcal{M}_{\bar{\Theta}}(\tilde{\Theta}) \right) + \partial_{\Theta} \mathcal{J}_{(\bar{y};\bar{\Theta})}(\tilde{\Theta})$  $(\bar{y} := \mathcal{M}(\bar{\Theta}))$ 

(Abstract) Unconstrained Optimization

$$\underset{\Theta \in \mathbb{R}^p}{\operatorname{minimize}} \quad \mathcal{J}(\mathcal{M}(\Theta); \Theta) =: J(\Theta)$$

#### Abstract NCO

 $\begin{array}{ll} \text{(Directional Derivative)} & \partial J_{\bar{\Theta}}(\tilde{\Theta}) = \langle \nabla J_{\bar{\Theta}}, \tilde{\Theta} \rangle_{\mathbb{R}^p} = 0, & \forall \tilde{\Theta} \in \mathbb{R}^p \\ \text{(Gradient)} & \nabla J_{\bar{\Theta}} = 0 \end{array}$ 

 $\begin{aligned} & \text{Chain Rule: } \partial J_{\bar{\Theta}}(\tilde{\Theta}) = \partial_y \mathcal{J}_{(\bar{y};\bar{\Theta})} \left( \partial \mathcal{M}_{\bar{\Theta}}(\tilde{\Theta}) \right) + \partial_{\Theta} \mathcal{J}_{(\bar{y};\bar{\Theta})}(\tilde{\Theta}) \\ & \left( \bar{y} := \mathcal{M}(\bar{\Theta}) \right) \qquad = \left\langle \nabla_y \mathcal{J}_{(\bar{y};\bar{\Theta})}, \partial \mathcal{M}_{\bar{\Theta}}(\tilde{\Theta}) \right\rangle + \left\langle \nabla_{\Theta} \mathcal{J}_{(\bar{y};\bar{\Theta})}, \tilde{\Theta} \right\rangle_{\mathbb{R}^p} \end{aligned}$ 

(Abstract) Unconstrained Optimization

$$\underset{\Theta \in \mathbb{R}^p}{\operatorname{minimize}} \quad \mathcal{J}(\mathcal{M}(\Theta); \Theta) =: J(\Theta)$$

#### Abstract NCO

$$\begin{aligned} \text{Chain Rule: } \partial J_{\bar{\Theta}}(\tilde{\Theta}) &= \partial_y \mathcal{J}_{(\bar{y};\bar{\Theta})} \left( \partial \mathcal{M}_{\bar{\Theta}}(\tilde{\Theta}) \right) + \partial_{\Theta} \mathcal{J}_{(\bar{y};\bar{\Theta})}(\tilde{\Theta}) \\ \left( \bar{y} := \mathcal{M}(\bar{\Theta}) \right) &= \left\langle \nabla_y \mathcal{J}_{(\bar{y};\bar{\Theta})}, \partial \mathcal{M}_{\bar{\Theta}}(\tilde{\Theta}) \right\rangle + \left\langle \nabla_{\Theta} \mathcal{J}_{(\bar{y};\bar{\Theta})}, \tilde{\Theta} \right\rangle_{\mathbb{R}^p} \\ &= \left\langle \partial \mathcal{M}_{\bar{\Theta}}^* \left( \nabla_y \mathcal{J}_{(\bar{y};\bar{\Theta})} \right), \tilde{\Theta} \right\rangle_{\mathbb{R}^p} + \left\langle \nabla_{\Theta} \mathcal{J}_{(\bar{y};\bar{\Theta})}, \tilde{\Theta} \right\rangle_{\mathbb{R}^p} \end{aligned}$$

(Abstract) Unconstrained Optimization

$$\underset{\Theta \in \mathbb{R}^p}{\operatorname{minimize}} \quad \mathcal{J}(\mathcal{M}(\Theta); \Theta) =: J(\Theta)$$

#### Abstract NCO

 $\begin{array}{ll} \text{(Directional Derivative)} & \partial J_{\bar{\Theta}}(\tilde{\Theta}) = \langle \nabla J_{\bar{\Theta}}, \tilde{\Theta} \rangle_{\mathbb{R}^p} = 0, & \forall \tilde{\Theta} \in \mathbb{R}^p \\ \text{(Gradient)} & \nabla J_{\bar{\Theta}} = 0 \end{array}$ 

 $\begin{aligned} \text{Chain Rule: } \partial J_{\bar{\Theta}}(\tilde{\Theta}) &= \partial_y \mathcal{J}_{(\bar{y};\bar{\Theta})} \left( \partial \mathcal{M}_{\bar{\Theta}}(\tilde{\Theta}) \right) + \partial_{\Theta} \mathcal{J}_{(\bar{y};\bar{\Theta})}(\tilde{\Theta}) \\ \left( \bar{y} := \mathcal{M}(\bar{\Theta}) \right) &= \left\langle \nabla_y \mathcal{J}_{(\bar{y};\bar{\Theta})}, \partial \mathcal{M}_{\bar{\Theta}}(\tilde{\Theta}) \right\rangle + \left\langle \nabla_{\Theta} \mathcal{J}_{(\bar{y};\bar{\Theta})}, \tilde{\Theta} \right\rangle_{\mathbb{R}^p} \\ &= \left\langle \partial \mathcal{M}_{\bar{\Theta}}^* \left( \nabla_y \mathcal{J}_{(\bar{y};\bar{\Theta})} \right), \tilde{\Theta} \right\rangle_{\mathbb{R}^p} + \left\langle \nabla_{\Theta} \mathcal{J}_{(\bar{y};\bar{\Theta})}, \tilde{\Theta} \right\rangle_{\mathbb{R}^p} \\ &= \left\langle \partial \mathcal{M}_{\bar{\Theta}}^* \left( \nabla_y \mathcal{J}_{(\bar{y};\bar{\Theta})} \right) + \nabla_{\Theta} \mathcal{J}_{(\bar{y};\bar{\Theta})}, \tilde{\Theta} \right\rangle_{\mathbb{R}^p} \end{aligned}$ 

(Abstract) Unconstrained Optimization

$$\underset{\Theta \in \mathbb{R}^p}{\operatorname{minimize}} \quad \mathcal{J}(\mathcal{M}(\Theta); \Theta) =: J(\Theta)$$

#### Abstract NCO

 $\begin{array}{ll} \text{(Directional Derivative)} & \partial J_{\bar{\Theta}}(\tilde{\Theta}) = \langle \nabla J_{\bar{\Theta}}, \tilde{\Theta} \rangle_{\mathbb{R}^p} = 0, & \forall \tilde{\Theta} \in \mathbb{R}^p \\ \text{(Gradient)} & \nabla J_{\bar{\Theta}} = 0 \end{array}$ 

 $\begin{aligned} \text{Chain Rule: } \partial J_{\bar{\Theta}}(\tilde{\Theta}) &= \partial_y \mathcal{J}_{(\bar{y};\bar{\Theta})} \left( \partial \mathcal{M}_{\bar{\Theta}}(\tilde{\Theta}) \right) + \partial_{\Theta} \mathcal{J}_{(\bar{y};\bar{\Theta})}(\tilde{\Theta}) \\ \left( \bar{y} := \mathcal{M}(\bar{\Theta}) \right) &= \left\langle \nabla_y \mathcal{J}_{(\bar{y};\bar{\Theta})}, \partial \mathcal{M}_{\bar{\Theta}}(\tilde{\Theta}) \right\rangle + \left\langle \nabla_{\Theta} \mathcal{J}_{(\bar{y};\bar{\Theta})}, \tilde{\Theta} \right\rangle_{\mathbb{R}^p} \\ &= \left\langle \partial \mathcal{M}_{\bar{\Theta}}^* \left( \nabla_y \mathcal{J}_{(\bar{y};\bar{\Theta})} \right), \tilde{\Theta} \right\rangle_{\mathbb{R}^p} + \left\langle \nabla_{\Theta} \mathcal{J}_{(\bar{y};\bar{\Theta})}, \tilde{\Theta} \right\rangle_{\mathbb{R}^p} \\ &= \left\langle \partial \mathcal{M}_{\bar{\Theta}}^* \left( \nabla_y \mathcal{J}_{(\bar{y};\bar{\Theta})} \right) + \nabla_{\Theta} \mathcal{J}_{(\bar{y};\bar{\Theta})}, \tilde{\Theta} \right\rangle_{\mathbb{R}^p} \\ &= \left\langle \nabla J_{\bar{\Theta}}, \tilde{\Theta} \right\rangle_{\mathbb{R}^p} \end{aligned}$ 

(Abstract) Unconstrained Optimization

$$\underset{\Theta \in \mathbb{R}^p}{\operatorname{minimize}} \quad \mathcal{J}(\mathcal{M}(\Theta); \Theta) =: J(\Theta)$$

#### Abstract NCO

$$\textbf{Gradient:} \ \nabla J_{\bar{\Theta}} = \partial \mathcal{M}^*_{\bar{\Theta}} \left( \nabla_y \mathcal{J}_{(\bar{y};\bar{\Theta})} \right) + \nabla_{\Theta} \mathcal{J}_{(\bar{y};\bar{\Theta})}$$

(Abstract) Unconstrained Optimization

$$\underset{\Theta \in \mathbb{R}^p}{\operatorname{minimize}} \quad \mathcal{J}(\mathcal{M}(\Theta); \Theta) =: J(\Theta)$$

#### Abstract NCO

| $\textbf{Gradient:} \ \nabla J_{\bar{\Theta}} = \partial \mathcal{M}^*_{\bar{\Theta}} \left( \nabla_y \mathcal{J}_{(\bar{y};\bar{\Theta})} \right) + \nabla_{\Theta} \mathcal{J}_{(\bar{y};\bar{\Theta})}$ |                                                                   |                                   |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------|--|--|
|                                                                                                                                                                                                            | Operator Form                                                     | Differential Equations Form       |  |  |
| $\mathcal{M}: \mathbb{R}^p \to \mathbb{L}^2_m[0,T]$                                                                                                                                                        | $\bar{y} = \mathcal{M}(\bar{\Theta})$                             | $\checkmark$ Forward Nonlinear DE |  |  |
| $\partial \mathcal{M}_{\bar{\Theta}} : \mathbb{R}^p \to \mathbb{L}^2_m[0,T]$                                                                                                                               | $\tilde{y} = \partial \mathcal{M}_{\bar{\Theta}}(\tilde{\Theta})$ | $\checkmark$ Forward Linear DE    |  |  |
| $\partial \mathcal{M}^*_{\bar{\Theta}} : \mathbb{L}^2_m[0,T] \to \mathbb{R}^p$                                                                                                                             | $\hat{\Theta} = \partial \mathcal{M}^*_{\bar{\Theta}}(\hat{y})$   | $\checkmark$ Backward Linear DE   |  |  |

(Abstract) Unconstrained Optimization

$$\underset{\Theta \in \mathbb{R}^p}{\operatorname{minimize}} \quad \mathcal{J}(\mathcal{M}(\Theta); \Theta) =: J(\Theta)$$

#### Abstract NCO

| Gradient                                                                       | $: \nabla J_{\bar{\Theta}} = \partial \mathcal{M}_{\bar{\Theta}}^* \left( \nabla \mathcal{M}_{\bar{\Theta}}^* \right) = \partial \mathcal{M}_{\bar{\Theta}}^* \left( \nabla \mathcal{M}_{\bar{\Theta}}^* \right)$ | $\left( \nabla_y \mathcal{J}_{(ar{y};ar{\Theta})} \right) +  abla_{\Theta} \mathcal{J}_{(ar{y};ar{\Theta})}$ |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
|                                                                                | Operator Form                                                                                                                                                                                                     | Differential Equations Form                                                                                  |
| $\mathcal{M}: \mathbb{R}^p \to \mathbb{L}^2_m[0,T]$                            | $\bar{y} = \mathcal{M}(\bar{\Theta})$                                                                                                                                                                             | $\checkmark$ Forward Nonlinear DE                                                                            |
| $\partial \mathcal{M}_{\bar{\Theta}} : \mathbb{R}^p \to \mathbb{L}^2_m[0,T]$   | $\tilde{y} = \partial \mathcal{M}_{\bar{\Theta}}(\tilde{\Theta})$                                                                                                                                                 | $\checkmark$ Forward Linear DE                                                                               |
| $\partial \mathcal{M}^*_{\bar{\Theta}} : \mathbb{L}^2_m[0,T] \to \mathbb{R}^p$ | $\hat{\Theta} = \partial \mathcal{M}^*_{\bar{\Theta}}(\hat{y})$                                                                                                                                                   | $\checkmark$ Backward Linear DE                                                                              |
| $\int \dot{\chi} = F$                                                          | $V(\chi;\bar{\Theta});$                                                                                                                                                                                           | $\chi(0) = \chi_0$ Parameter-Dependent                                                                       |
| $ \cdot \nabla J_{\Theta} = 0  \text{if } \dot{\xi} = A $                      | $(\chi;\bar{\Theta})\xi + b(\chi;\bar{\Theta});$                                                                                                                                                                  | $\xi(T) = \xi_T \qquad \text{TPBVP}$                                                                         |
| M EN M IZI I (EDITI)                                                           | CDC 0010                                                                                                                                                                                                          | D 1 11 0010 F / 1                                                                                            |

#### **Gradient:** $\nabla J_{\Theta} = \partial \mathcal{M}_{\Theta}^* \left( \nabla_y \mathcal{J}_{(y;\Theta)} \right) + \nabla_{\Theta} \mathcal{J}_{(y;\Theta)}$

**Gradient:** 
$$\nabla J_{\Theta} = \partial \mathcal{M}_{\Theta}^* \left( \nabla_y \mathcal{J}_{(y;\Theta)} \right) + \nabla_{\Theta} \mathcal{J}_{(y;\Theta)}$$

Iterative Numerical Method:  $\Theta_{i+1} = \Theta_i + \alpha_i d_i$ 

**Gradient:** 
$$\nabla J_{\Theta} = \partial \mathcal{M}_{\Theta}^* \left( \nabla_y \mathcal{J}_{(y;\Theta)} \right) + \nabla_{\Theta} \mathcal{J}_{(y;\Theta)}$$

Iterative Numerical Method:  $\Theta_{i+1} = \Theta_i + \alpha_i d_i$ 

Gradient Descent:  $d_i = -\nabla J_{\Theta_i}$ 

**Gradient:** 
$$\nabla J_{\Theta} = \partial \mathcal{M}_{\Theta}^* \left( \nabla_y \mathcal{J}_{(y;\Theta)} \right) + \nabla_{\Theta} \mathcal{J}_{(y;\Theta)}$$

Iterative Numerical Method:  $\Theta_{i+1} = \Theta_i + \alpha_i d_i$ 

Gradient Descent:  $d_i = -\nabla J_{\Theta_i}$ 

Conjugate Gradient Descent: 
$$d_i = \begin{cases} -\nabla J_{\Theta_i} & i = 0\\ -\nabla J_{\Theta_i} + \frac{||\nabla J_{\Theta_i}||^2}{||\nabla J_{\Theta_{i-1}}||^2} d_{i-1} & i > 0 \end{cases}$$

#### Algorithm 1 (Conjugate) Gradient Descent Algorithm

- 1: Start with an initial guess  $\Theta_0 \in \mathbb{R}^p$  and set i = 0.
- 2: Compute the gradient at  $\Theta_i$ ,  $\nabla J_{\Theta_i}$ :

(a) Simulate the closed-loop dynamics with  $\Theta = \Theta_i$ :

$$\begin{split} \dot{x}_i &= f(x_i, u_i, w); & x_i(0) = x_0 \\ \dot{z}_i &= g(z_i, y_i, v; \Theta_i); & z_i(0) = z_0 \\ u_i &= \kappa(z_i, y_i, v; \Theta_i) \\ y_i &= h(x_i). \end{split}$$

(b) Compute the time-varying Jacobians:

$$\begin{array}{ll} A_i = \partial_x f_{(x_i, u_i, w)}, & B_i = \partial_u f_{(x_i, u_i, w)} \\ C_i = \partial b_{x_i}, & A_i^c = \partial_z g_{(z_i, y_i, w; \Theta_i)} \\ B_i^c = \partial_y g_{(z_i, y_i, w; \Theta_i)}, & C_i^c = \partial_z \kappa_{(z_i, y_i, w; \Theta_i)} \\ D_i^c = \partial_y \kappa_{(z_i, y_i, w; \Theta_i)}, & B_i^\Theta = \partial_\Theta g_{(z_i, y_i, w; \Theta_i)} \\ C_i^\Theta = \partial_\Theta \kappa_{(z_i, y_i, w; \Theta_i)}. \end{array}$$

(c) Solve for λ<sub>i</sub>(t), with λ<sub>i</sub>(T) = 0:

$$\dot{\lambda_i} = - \begin{bmatrix} A_i + B_i D_i^c C_i & B_i C_i^c \\ B_i^c C_i & A_i^c \end{bmatrix}^T \lambda_i - \begin{bmatrix} C_i^T Q \\ 0 \end{bmatrix} (y_i - y_r).$$

(d) Compute  $\xi_i(0)$ :

$$\dot{\xi}_i = -\begin{bmatrix} B_i C_i^{\Theta} \\ B_i^{\Theta} \end{bmatrix}^T \lambda_i; \quad \xi_i(T) = 0.$$

(e)  $\nabla J_{\Theta_i} = \xi_i(0) + \nabla b_{\Theta_i}$ .

3: Compute the update direction si:

(a) For a Gradient Descent Method:  $s_i = -\nabla J_{\Theta_i}$ .

(b) For a Conjugate Gradient Descent Method:

$$s_i = \begin{cases} -\nabla J_{\Theta_i} & i=0\\ -\nabla J_{\Theta_i} + \frac{||\nabla J_{\Theta_i}||^2}{||\nabla J_{\Theta_{i-1}}||^2}s_{i-1} & i>0. \end{cases}$$

- Pick a step size: α<sub>i</sub> = argmin J(Θ<sub>i</sub> + αs<sub>i</sub>).
- 5: Update the estimate:  $\Theta_{i+1}^{\alpha} = \Theta_i + \alpha_i s_i$ .
- 6: Set i = i + 1 and go back to step 2. Repeat until convergence.













#### • In 1D: GD = CGD

• Convergence in 9 iterations

M. Filo, M. Khammash (ETHz)

CDC, 2019



CDC, 2019









M. Filo, M. Khammash (ETHz)

CDC, 2019

December 11, 2019 1







M. Filo, M. Khammash (ETHz)

CDC, 2019



M. Filo, M. Khammash (ETHz)

CDC, 2019



#### Two Take-Home Messages

• Transient biomolecular dynamics also matter

• There is no way around proper tuning of biomolecular controllers

# Thank you!