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• Indirect objective minimizes ODE residuals @                      :

• But we really care about is direct trajectory error: 

Example class: linear-affine dynamics (unimolecular CRNs)
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Model class: Desired trajectory: 

solution of ODE desired trajectory

can show that:

- time discretization
- numeric differentiation
- non-exact (reduced) model

 Indirect error propagates through the dynamics supposed  to be realized⟹

!
careful when realizing

(near) unstable dynamics(small) (large)
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Model class: Desired trajectory: 

Allows adding hidden species to enhance expressiveness
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Model class: Desired trajectory: 

Direct optimization problem:

•

•

dynamics constraint

positive dynamics constraint

direct
trajectory error

sparsity
penalty

Advantages:

• No numerical differentiation

• Hidden species enrich modeling capacity

• Directly optimizes what we care about

Disadvantages:

• Nonconvex

Bayesian perspectives of
 the direct and indirect approaches
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Solution Strategy: Proximal Gradient Descent

7

Unconstrained Optimization

smooth non-smooth
but convex

projected soft-thresholding onto ℝ≥0

comes from backward simulation
of a co-state equation

comes from forward simulation
state equation

Also modified to obtain and
accelerated method

(closest parameter that minimizes h)
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Leloup et al. "Chaos and birhythmicity in a model for circadian oscillations of the PER and TIM proteins in Drosophila." Journal of theoretical biology (1999).

• 10-species model describing PER/TIM  
circadian dynamics

• Mass-action and Hill-type nonlinearities

• Exhibits oscillations, chaos, birhythmicity
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• No sparsity (full model)
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Library
(m functions)
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• n = 10 species
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• 7-species model

• Mass-action and Hill-type nonlinearities

• SINDy (indirect method) was shown to  
produce good derivative fits, but fail to  
capture trajectories beyond initial phase.

Daniels et al. "Efficient inference of parsimonious phenomenological models of cellular dynamics using S-systems and alternating regression." PloS one (2015).
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Desired trajectory
• n = 3 species (2 observed + 1 hidden)
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• First: dense fit ( )λ = 0
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Desired trajectory
• n = 3 species (2 observed + 1 hidden)

• Bimolecular reactions (up to quadratic)
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Take Home Message
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https://maurice-filo.github.io/

https://maurice-filo.github.io/
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Take Home Message
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Left minus right is not always right!

https://maurice-filo.github.io/

maurice.filo@bsse.ethz.ch 
mustafa.khammash@bsse.ethz.ch 
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