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Motivation & Goal

e CRNs model a wide range of dynamical processes (systems/synthetic biology, epidemiology ...)

* |n practice: - CRN is unknown - time-series of a subset of species is available

— Desired
--- Realized

e Goal: 2

. Desired Signals

\\ — y1(t)
— y2(t)

— Desired
-=-- Realized

Realized Dynamics

1 = fi(x1,x2,x3)
o = fo(x1,x2,23)

T3 = f3(x1,x2,x3)

* Reduced order: few species

e Sparse: few reactions | _ .
Ji biochemically meaningful
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Indirect (Derivative-based) Approaches

Model class:

0| d1(x) + o+ O | Gm(z) = | O D (x)

1010), -+, Om(-)}

Library

(m functions)

T

Pipeline:
1. Desired trajectory: rr(t); fort e |0,T]

2. Numerically estimate: @7 (?)

T
1 2 : ] - . .
3. olve: min — ' — 0P t dt Bamieh et al. "On discovering low order models in
S 0 2 0 T (t) (wT( )) 2 biochemical reaction kinetics." 2007 ACC.
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T
1 . 2
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* Indirect objective minimizes ODE residuals @ {z7(t)}o<;<r:  e7(t;0) = 0®(x7(t)) — 27 (t)

e But we really care about is direct trajectory error: ep(t;0) = z(t;0) — xr(t)
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But ... how are they related?
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Direct Approach: Target Trajectories, Not Derivatives

Model class: {$ = 0P (x) Desired trajectory: {yr(t)}o<,<7
y=Cux

I— Allows adding hidden species to enhance expressiveness
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Direct Approach: Target Trajectories, Not Derivatives

Model class: {$ = 09 (x) Desired trajectory: {yr(t)}o<,<7
y=Cux

Direct optimization problem:

" = argmin / Jy(t) — yr(0) |3 dt + A|6])
= 0P(x

subject to ¢ y = Cux
So0 > 0.
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Direct Approach: Target Trajectories, Not Derivatives

Model class: {$ = 09 (x) Desired trajectory: {yr(t)}o<,<7
y=Cux

sparsity

Direct optimization problem: direct
trajectory error penalty
0™ = argmin —/ —yr(t th+;
6

= 0P(x
subject to ¢ y = Cux

So0 > 0.
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Direct Approach: Target Trajectories, Not Derivatives

Model class: | = 0P (x) Desired trajectory: {yr(t)}o<,<7
y = Cux
Direct optimization problem: direct sparsity

trajectory error

1t
0" = argmin / [y(0) —yr ()2 di]+

T = 0P(x)
subject to <|y = Cx

S5060 > 0. positive dynamics constraint

penalty

dynamics constraint
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Direct Approach: Target Trajectories, Not Derivatives

Model class: | © = 0®(x) Desired trajectory: {yT(t)}ogth
y = Cux
Direct optimization problem: _ direct sparsity
trajectory error penalty

1t
0" = argmin / [y(0) —yr ()2 di]+

= 0P(x)
subject to <|y = Cx

S5060 > 0. positive dynamics constraint

dynamics constraint

Advantages:
* No numerical differentiation
 Hidden species enrich modeling capacity
e Directly optimizes what we care about
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Direct Approach: Target Trajectories, Not Derivatives

Model class: | © = 0®(x) Desired trajectory: {yT(t)}ogth
y = Cux
Direct optimization problem: _ direct sparsity
trajectory error penalty

1t
0" = argmin / [y(0) —yr ()2 di]+

= 0P(x)
subject to <|y = Cx

S5060 > 0. positive dynamics constraint

dynamics constraint

Advantages: Disadvantages:
LOADING
e No numerical differentiation e Nonconvex (s )
.|.

. .. the direct and indirect approaches
e Directly optimizes what we care about ! indirect app
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Convert to Unconstrained Optimization

Constrained Optimization

" = argmin / ly(t) — yr ()2 dt + N

T =0P(x
subject to ¢ y = Cux

So060 > 0.
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Convert to Unconstrained Optimization

Constrained Optimization Parameter-to-Output Operator
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Convert to Unconstrained Optimization

Constrained Optimization Parameter-to-Output Operator

1

T
0* = argmin / ly(t) — yr ()2 dt + A
0

T = 0P(x)

subject to ¢ y = Cux
So060 > 0.

Unconstrained Optimization

- th
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/—H f_H
1 [t 2
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Solution Strategy: Proximal Gradient Descent

Unconstrained Optimization
smooth J(H) h(g) Nnon-smooth

but convex
’_H f—H
1 [t 2
0* — argmin 5/ M(O)] (1) — yr(0)| | dt + N[B]]y + T (S 0 0)
6 0
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Solution Strategy: Proximal Gradient Descent

Unconstrained Optimization

non-smooth
smooth .J(6) h(0) Wit convex
/_M f—H
1 [t 2
0* — argmin 5/ M(O)] (1) — yr(0)| | dt + N[B]]y + T (S 0 0)
6 0
o) — 0% — oV Jyu
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Solution Strategy: Proximal Gradient Descent

Unconstrained Optimization

- th
smooth .J(6) h(6) %?R c?cm(\)/%x
’_H f—H
1 [t 2
0* — argmin 5/ M(O)] (1) — yr(0)| | dt + N[B]]y + T (S 0 0)
6 0

0% +D = prox,, . (9““) _ awmk))

1 N .
proxy, (@) = arg min {% |6 — 0|5 + h(H)} (closest parameter that minimizes h)
0
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Solution Strategy: Proximal Gradient Descent

Unconstrained Optimization

- th
smooth .J(6) h(6) %?R c?cm(\)/%x
’_H f—H
1 [t 2
0* — argmin 5/ M(O)] (1) — yr(0)| | dt + N[B]]y + T (S 0 0)
6 0

0% +D = prox,, . (9““) _ awmk))

. 1 > >
proxy, (@) = arg min {% |6 — 0|5 + h(H)} (closest parameter that minimizes h)
0

= max {S o060 — Ao, 0} +sign(So0)omax{|Sob — A, 0}

projected soft-thresholding onto R,

T
Vg0 = / 2B (1) b ()17 dt.
0

comes from backward simulation I I comes from forward simulation
of a co-state equation state equation
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Solution Strategy: Proximal Gradient Descent

Unconstrained Optimization

smooth .J (9)
f_M

0" = argmin 5 [ || M(©)] (1)~ yr()

7

NnonN-smooth
h(H) but convex

e e
2
zdt—l—)\HﬂHl +7Z,(S080)

9(k+1) — proxy, ,, (H(k) o ang<k)) Also modified to obtain and

accelerated method

. 1 > >
proxy, (@) = arg min {% |6 — 0|5 + h(H)} (closest parameter that minimizes h)

0

= max {S o060 — Ao, 0} +sign(So0)omax{|Sob — A, 0}

projected soft-thresholding onto R,

T
Vg0 = / 2B (1) b ()17 dt.
0

comes from backward simulation I I

comes from forward simulation

of a co-state equation
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Example 1: Drosophila Circadian Oscillator

i — Kip" vsp by, — —Cmp T e 10-species model describing PER/TIM
Kip" + 210" Kmp + 71 circadian dynamics
by = Kypay — kgag — — 22 4 2008 . . L
2= Rep 1 = R 2 = s Ky * Mass-action and Hill-type nonlinearities
Gy = —pt2 g 2Rl “pts | Tap T4 e Exhibits oscillations, chaos, birhythmicity
Klp -+ To Kgp + X3 k‘gp + X3 k4p —+ T4
: Udp X4 U3p L3 Ugp L4
=k — k — k |
L4 4 L9 d L4 344 L8 Kap + 74 ksp + a3 kap + 74
KlTn Vgt 1. Umt L5
Ty = x
P K" Fa0" 0 K +
e = ko 25 — ky 2 Vit e | U2t L7
* kit +x6 kot + 27
B — U1t L6 k. o U2t L7 U3t L7 U4t L8
kit + X6 kot +x7 kst + o7 kay + T8
U3t L7 Ugt L8 Udt 48

T9g = ko T19 — k1 T9g — kg X9 — kqxg9 + k3 T4 T8

T190 = k129 — ko x10 — kg x10-

Leloup et al. "Chaos and birhythmicity in a model for circadian oscillations of the PER and TIM proteins in Drosophila." Journal of theoretical biology (1999).
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Example 1: Drosophila Circadian Oscillator

Desired trajectory {yr(t)}<,<r Model: & = 0®(z)
’ « Dat
Al
—~ | A
~— 2
v ! . .
OO 50 100 150 200 250 300
— argmin / y(t) — yr ()13 dt + A6
T =0P(x
subject to ¢ y=Cux
So00 > 0.

Maurice Filo, ETH Zurich CDC 2025



Example 1: Drosophila Circadian Oscillator
Desired trajectory {yr ()}« Model: & = 60P(x)

* n =2 species (1 observed + 1 hidden)

« Data

| |
0 50 100 150 200 250 300

— argmin / Jy(t) — yr ()2 de + N6
T =0P(x

subject to ¢ y=Cx
So06 > 0.

Maurice Filo, ETH Zurich CDC 2025



Example 1: Drosophila Circadian Oscillator
Desired trajectory {yr ()}« Model: & = 60P(x)

* n =2 species (1 observed + 1 hidden)

« Data

Y f.f | |
OO 50 100 150 200 250 300
C=1[1 0
— argmin / ly(t) — yr ()2 dt + N6,
T =0P(x
subject to ¢ y=Cx
So00 > 0.

Maurice Filo, ETH Zurich CDC 2025



Example 1: Drosophila Circadian Oscillator
Desired trajectory {yr ()}« Model: & = 60P(x)

* n =2 species (1 observed + 1 hidden)

« Data

 Bimolecular reactions (up to quadratic)

Y f.f | |
OO 50 100 150 200 250 300
C=1[1 0
— argmin / ly() — yr(®) |2 dt + A|6]]
T =0P(x
subject to ¢ y=Cx
So00 > 0.

Maurice Filo, ETH Zurich CDC 2025



Example 1: Drosophila Circadian Oscillator

Desired trajectory {yr ()}« Model: © = 0®(x)
* n =2 species (1 observed + 1 hidden)

« Data

 Bimolecular reactions (up to quadratic)

|V f.f . .
OO 90 100 150 200 250 300
C=1[1 0
* : 1 g 2
07 = argmin 7 |ly(t) — yr(t)|]2 dt + Al[6]]1
0
= 0P (x)
subject to ¢ y=Cx
So00 > 0.

Maurice Filo, ETH Zurich CDC 2025



Example 1: Drosophila Circadian Oscillator

Desired trajectory {yr(t)}o<;<r

4 | | |

« Data

300

Maurice Filo, ETH Zurich CDC 2025

Model: © = 0P (x)
* n =2 species (1 observed + 1 hidden)

 Bimolecular reactions (up to quadratic)

011 012 b3 ba 015 Oi6
021 Ooo O3 0Ozq 025 0O

C=1[1 0

0 —

1

T
0" = argmin / [y(t) — yr (0|12 dt + A0,
0

= 0P (x)
subject to ¢ y=Cx
So060 > 0.




Example 1: Drosophila Circadian Oscillator

Desired trajectory {yr ()}« Model: & = 6®(x)

4 | | | | |

« Data

Maurice Filo, ETH Zurich CDC 2025

* n =2 species (1 observed + 1 hidden)
 Bimolecular reactions (up to quadratic)

F. J \/ | | 1; | | 0 — _911 012 013 014 015 016
OO o0 100 150 200 250 300 - _(921 (922 (923 924 (925 ‘926_
C=1[1 0
1 0 1 0 0 1
> = 110100
* . 1 . 2
0 = argmin o ly(t) — yr(t)[|5 dt + AJ|6]]1
0
= 0P (x)
subject to ¢ y=Cx
So00 > 0.



Example 1: Drosophila Circadian Oscillator
Model: © = 0P (x)

Desired trajectory {yr(t)}o<;<r

4 | | |

« Data

300

Maurice Filo, ETH Zurich CDC 2025

* n =2 species (1 observed + 1 hidden)

 Bimolecular reactions (up to quadratic)
e First: dense fit (A = 0)

0 —
C=1[1 0
1 0 1 0
=111 01
* . 1
0" = argmin —
0 2
subject to

011 012 b3 ba 015 Oi6
021 Ooo O3 0Ozq 025 0O

0
0

)
0
X
/O ly(t) — yr(8)]13 dt + A0,

= 0P (x)
y=Cux
So00 > 0.



Example 1: Drosophila Circadian Oscillator

Desired trajectory {yr ()}« Model: © = 0®(x)
* n =2 species (1 observed + 1 hidden)

4 | | | | |
—=| 1 | » Bimolecular reactions (up to quadratic)
3 _
= | A e First: dense fit (41 = 0)
= erit - - -
e ‘A N e Then: sparse fit (larger 1) !
F. \/ \/ | | ¢ | | 0 — 011 012 6013 614 615 Oi6
% 50 100 150 200 250 300 - _6’21 Ooo O35 0Oyq 095 6’26_
C=1[1 0
1 0 1 0 0 1
=11 101 0 0
i o ] 2
0" = agmin 5 [ y(0) — yr () 3 + A6l
= 0P (x)
subject to ¢ y=Cx
So00 > 0.

Maurice Filo, ETH Zurich CDC 2025



Example 1: Drosophila Circadian Oscillator

Desired trajectory {yr(t)}o<;<r

4 | | I . — |
4 * Data
/ﬂ: —= Realization
31 =20 | -
! =
N
+ : 0 : :
2 0 100 200 300 -
1 — . ) ‘ / 4
fts ¥V V V
| ¢
0 | | | | |
0 50 100 150 200 250 300

Maurice Filo, ETH Zurich CDC 2025

Model: © = 0P (x)
* n =2 species (1 observed + 1 hidden)

 Bimolecular reactions (up to quadratic)
e First: dense fit (A = 0)

e Then: sparse fit (larger A)

—911 (912
0 —

_921 022
C=1[1 0

1 0 1
S__1 1 0

013 014 15 b1
Oo3 024 0O25 0o

0
1

0 1
0 0
1

T
0* = argmin / [y(t) — yr (0|12 dt + A0,
0

0

subject to

= 0P (x)
y=Cx
So00 > 0.



Example 1: Drosophila Circadian Oscillator

Desired trajectory {yr(¢)}o<, <1 Model: © = 0®(x)
* n =2 species (1 observed + 1 hidden)
4 | | Vi ; — '
s, —reaizaion]| | | ® Bimolecular reactions (up to quadratic)
3k — 2} - d
= | 4 = o First: dense fit (1 = 0)
1 4 \ } e Then: sparse fit (larger A)
i) Y . ’ . « t | | 0 _ 011 012 013 014 6015 016
% 50 100 150 200 250 300 _6’21 Ooo Oo3 0Ooy4 055 6’26_
y | | : E— , C=|1 0
i y « Data
Al :BC: —Realization_ S B _1 O 1 O O 1_
. 3 /11 01 0 0
ok 0o 160 260 300 - ) T
2: « \ \ \ \ . . : \ * . ]_ 9
AINAW f110" =argmin — [ |ly(t) —yr(t)|5dt + A[|@]]1
Tk 'VVVVVVVVVYVVVYVVYVVYYVY o 2Jo
O .. | | ?lf | | Qj p— Hq)(x)
0 50 100 150 200 250 300
subject to ¢ y=Cx
So00 > 0.

Maurice Filo, ETH Zurich CDC 2025



Example 1: Drosophila Circadian Oscillator

Desired trajectory {yr(t)}o<;<r

4 | | 7 : — |
« Data
S —= Realization
3 é\] 21 - _
N\
+ 0 : :
\: 2 0 100 200 300 -
1 v v v v v > v
|
0 | | ?lf | |
50 100 150 200 250 300
2 | | . I . |
5t : - Data
"y - Realization
N—"
3 gfg\] -
N
+ 0 : :
\: 2 0 100 200 300 ]
& \ \ \ ) A B A
1 :: ~ v 7 \7 \s \/ \/ \/ \7 \/ "/ «
| {
0 | | | | |
50 100 150 200 250 300

Model: © = 0P (x)
* n =2 species (1 observed + 1 hidden)

 Bimolecular reactions (up to quadratic)
e First: dense fit (A = 0)
e Then: sparse fit (larger A)

o @) ,
T1 = o + kxr1 +mx] — Yox1T2
: 2
Lo = NT1T2 + 12T — Y2I2
1o | 0.1626 [ k& | 0.087
n | 0.0274 | 7 | 0.2297
m 0.2338 Y2 0.1892
12 0.1882

Maurice Filo, ETH Zurich

CDC 2025



Example 1: Indirect method

Desired trajectory {x(t)

}ogth Model: = = 0d(x)

* N =2 species
e Bimolecular reactions (up to quadratic)
* No sparsity (full model)

- _911 (916- L2
0 = 021 -+ O ®(z) = 2

min% /0 i () — 00 (zp (1) || dt

Maurice Filo, ETH Zurich CDC 2025




Example 1: Indirect method

Desired trajectory {1 (t)} .,/

e Data z7

0.5 0D (zr) |_
® Ili)ata LT

°r r fromz = 0P (x) |

5 A A '

1 \/\ / /\/"""\,\AV«(\“""'

Maurice Filo, ETH Zurich CDC 2025

Model: i = 0P (z)

* N =2 species

 Bimolecular reactions (up to quadratic)

* No sparsity (full model)

IZ%
021

1

_ 1

(916 X

™~ 2(z) = | 2
i L1L9

5
| 2
i (1) — 00 (1) ||




Example 1: Indirect method

Desired trajectory {z7(¢)},, <t

1 | | | | |
e Data z7
0.5 0D (x7) |
()
>
©
2 ok A
()
()
05 | | | | |
4 UN 1 1 1 1
1ol | e Data xr
T rfromz =0®(x) |-
- 0 10 20
— 2l _
3
1
t
0 | | | | |
0) 50 100 150 200 250 300

Maurice Filo, ETH Zurich CDC 2025

Model: = = 0d(x)

* n =10 species

* Bimolecular reactions (up to quadratic)

 No sparsity (full model)

011

010,1

01 .66

010,66

-4 66Xx1



Example 2: Glycolytic Oscillator

_ k1 71 26 * /-species model
1= 0 (m_(;)q 1 » Mass-action and Hill-type nonlinearities
K
1 e SINDy (indirect method) was shown to
G0 = ko 2o s — N ko o — ke To Tn 2 k1 1 2 produce good derivative fits, but fail to
( 6 )q L1 capture trajectories beyond initial phase.
K1

j?g:Nk’QZEQ—Akgmg—k2$2$5—|—k3$3$6
Ta = KT — KTy +Aksxyg — kaxsxg — kg x4 5
j75 :Nk2$2—k2$2$5—k4334375—]{?656233‘5

2k1 L1 L6

Zb@ :ZAk3$3—k5LE6—2k3£E3£E6

Tr =kKkYry —x7 (B+KY).

Daniels et al. "Efficient inference of parsimonious phenomenological models of cellular dynamics using S-systems and alternating regression." PloS one (2015).

Maurice Filo, ETH Zurich CDC 2025




Example 2: Glycolytic Oscillator

k1 1 Te e 7-species model
1= Jo ( 26 )q 1 e Mass-action and Hill-type nonlinearities
o » SINDy (indirect method) was shown to
0 = ko To Tx — N ks T2 — ke T Tt 2 k1 5’3q1 L6 produce good derivative fits, but fail to
( T ) 1 capture trajectories beyond initial phase.
K Brunton et al. "Discovering governing equations

from data by sparse identification of nonlinear

r3 = N kyxog — Akgx3 — ko o x5 + k323 T6 dynamical systems.” PNAS (2016).

Ta = KT — KTy +Aksxyg — kaxsxg — kg x4 5
j75 :Nk2$2—k2$2$5—k4334375—]{?656233‘5

2k1 L1 L6

2Ak3$3—k5$6—2k3$3$6

3.
o>
|

Tr =kKkYry —x7 (B+KY).

Daniels et al. "Efficient inference of parsimonious phenomenological models of cellular dynamics using S-systems and alternating regression." PloS one (2015).

Maurice Filo, ETH Zurich CDC 2025




Example 2: Glycolytic Oscillator

k1 1 Te e 7-species model
1|= Jo ( 26 )q 1 e Mass-action and Hill-type nonlinearities
o » SINDy (indirect method) was shown to
Sol= ko 2o 2x — N ks T2 — ke T L& 2 k1 5’3q1 L6 produce good derivative fits, but fail to
( T ) 1 capture trajectories beyond initial phase.
K Brunton et al. "Discovering governing equations

from data by sparse identification of nonlinear

r3 = N kyxog — Akgx3 — ko o x5 + k323 T6 dynamical systems.” PNAS (2016).

Ta = KT — KTy +Aksxyg — kaxsxg — kg x4 5
j75 :Nk2$2—k2$2$5—k4334375—]{?656233‘5

2k1 L1 L6

2Ak3$3—k5$6—2k3$3$6

3.
o>
|

Tr =kKkYry —x7 (B+KY).

Daniels et al. "Efficient inference of parsimonious phenomenological models of cellular dynamics using S-systems and alternating regression." PloS one (2015).

Maurice Filo, ETH Zurich CDC 2025




Example 2: Glycolytic Oscillator
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Example 2: Glycolytic Oscillator
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Example 2: Glycolytic Oscillator

Desired trajectory {yr(t)}o<;<r

Realization

N\

0

Maurice Filo, ETH Zurich

CDC 2025

Model: © = 0P (x)




Example 2: Glycolytic Oscillator

Desired trajectory {yr(t)}o<;<r

4

3

1

0

=
\:2/\
=

 Data
- Realization

<

m—
4
k
o
[
L]
(.
®
L]

\/

$ L

r

h &

0

Maurice Filo, ETH Zurich

CDC 2025

* n =3 species (2 observed + 1 hidden)

IO }_\I

)

Model: © = 0P (x)

IO OI



Example 2: Glycolytic Oscillator

Desired trajectory {yr(t)}o<;<r

4

3

1

=
\:2/\
=

 Data
- Realization

<

2.5

m—
4
k
o
[
L]
(.
®
L]

[

=
(]
<

q

10

Maurice Filo, ETH Zurich

CDC 2025

 Bimolecular reactions (up to quadratic)

Model: © = 0P (x)
* n =3 species (2 observed + 1 hidden)

01.10
02.10
03,10




Example 2: Glycolytic Oscillator

Desired trajectory {y7r(t)}o<;<7 Model: & = 609 (x)
* n =3 species (2 observed + 1 hidden)

4 . . . E— —— o  Bimolecular reactions (up to quadratic)
S == Realization - -
Y S MMM 11 | o First: dense fit (A = 0) L
32 a' . Oo _ 5 10 .
T / \ . % .g .z % ,_ _91,1 012 --- 91,10_
0 | | | | | | | | | 9 — 9271 92’2 * e 9271()
| | | | | | | | | _9371 93,2 Tt 93’10_
3 - } - I 0 O
— ’ =10 1 o
=2 ‘ ‘
&
1 -
\ /
< = | | | | |
OO 1 2 3 4 5 6 7 8 9 10
t

Maurice Filo, ETH Zurich CDC 2025



Example 2: Glycolytic Oscillator

Desired trajectory {yr(t)}o<;<r

4 | | | | | | . I I I
Py * Data
= 10 1 |=—Realization
3 A ESBO 5| -
= 0 '
~— 2 V/a 0 5 10 -
y
= \ A
1 | -
0 | | | | | | | | | \4
s | | | | | | | | | ~
2.5 / _
A~ 2 4 4
“~o
N—"
~ 1.5
=
1 4 ]
0.5H \ -
0 | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10
{

Maurice Filo, ETH Zurich CDC 2025

Model: © = 0P (x)
* n =3 species (2 observed + 1 hidden)

 Bimolecular reactions (up to quadratic)
o First: dense fit (1 = 0) L
e Then: sparse fit (larger A)

011 012 01 10
0= |01 029 0210
031 032 03,10
1 0 0
“=lo 10




Desired trajectory {yr(t)}o<;<r

Example 2: Glycolytic Oscillator

=== Realization

011 012 -+ O110
0= |01 022 --- 0210
031 032 --- 0310
.
O_

Maurice Filo, ETH Zurich CDC 2025

Model: © = 0P (x)
n = 3 species (2 observed + 1 hidden)

Bimolecular reactions (up to quadratic)
First: dense fit (1 = 0) L
Then: sparse fit (larger A)

—> ()

(21 = po + k1x1 — (Y1202 + Y1373) 21
{ Tg = 7721$% + 772333% — (Y20 + Y2171 + Y2222 + Yo3T3) T2

. 2
(T3 = ksxq + n3xr] + 333(0411’1 + 0435173) — V322223




Take Home Message

https://maurice-filo.github.io/

min

rr — 0P

Maurice Filo, ETH Zurich CDC 2025
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https://maurice-filo.github.io/

Take Home Message

Left minus right is not always right!
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maurice.filo@bsse.ethz.ch

mustafa.khammash@bsse.ethz.ch

https://maurice-filo.github.io/

Maurice Filo, ETH Zurich CDC 2025
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