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Filo, M., Kumar, S. & Khammash, M. (2022). A Hierarchy of Biomolecular PID Feedback Controllers for Rubust Perfect 
Adaptation and Dynamic Performance. Nature Communications.

Analytical Results:
• Established a hierarchy in dynamic performance

• Developed a tailored moment closure technique to 
approximate the stationary variance of the PI controllers

• Conclusion:  P-component attenuates noise, while I-
component amplifies it.

Simulation Results:
• 2nd- Order PID amplifies noise, while 3rd and 4th-order PIDs attenuate noise.
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Analytical Results:
• Established a hierarchy in dynamic performance

• Developed a tailored moment closure technique to 
approximate the stationary variance of the PI controllers

• Conclusion:  P-component attenuates noise, while I-
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Simulation Results:
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Why? Still an open problem …
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Analytical Results:
• Established a hierarchy in dynamic performance

• Developed a tailored moment closure technique to 
approximate the stationary variance of the PI controllers

• Conclusion:  P-component attenuates noise, while I-
component amplifies it.

Simulation Results:
• 2nd- Order PID amplifies noise, while 3rd and 4th-order PIDs attenuate noise.
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Splicing reaction yields new protein products with new functions!

Inteins: A Swiss Army Knife for Synthetic Biology
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rAIF was seen experimentally to achieve RPA but with a significant increase in noise.

Aoki, S. K., Lillacci, G., Gupta, A., Baumschlager, A., Schweingruber, D., & Khammash, M. (2019). A universal 
biomolecular integral feedback controller for robust perfect adaptation. Nature.
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Question 1: Does this controller achieve RPA?
Answer: Theorem 1 (RPA Test)
•  Provides sufficient algebraic conditions for RPA
•  Valid in both deterministic & stochastic settings
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Question 2: How to analyze such complex controllers?

•  Provides an easy-to-use recipe for model reduction
•  Uncovers the underlying control architectures
•  Marries singular perturbation theory to deficiency-zero theorem

Answer: Theorem 2 (Model Reduction)
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Molecular integrators are essential for robust control in living cells, but present significant 
challenges:

• Difficult to implement biologically
• Susceptible to poor dynamics and amplified noise
• Prone to windup effects
• May exhibit leakage

Control theory provides key solutions:
• Developed theory for intein-based implementations
• Designed augmented circuits realizing molecular PID controllers
• Established theory for molecular anti-windup circuits
• Enhanced architectures that diminish leakage effects

Looking ahead:
• Control theory will drive synthetic biology forward.
• Next Steps: Develop the theory tailored to applications in cell therapy and bio-production
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