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Dynamics of the rAlF Controller: Root Locus
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Dynamics of the sAIF Controller: Pl Coverage
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Dynamics of the sAIF Controller: Pl Coverage
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Dynamics of the sAIF Controller: Pole Placement
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Dynamics of the sAIF Controller: Pole Placement
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Stationary Intrinsic Noise Reduction: sAlF vs rAlF
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Question: Given that the non-ideal sAIF controller does not perfectly reject disturbances,
why bother with additional circuitry?
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Steady-State Errors in Deterministic Non-ideal Settings

A
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Question: Given that the non-ideal sAIF controller does not perfectly reject disturbances,
why bother with additional circuitry?
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Question: Given that the non-ideal sAIF controller does not perfectly reject disturbances,
why bother with additional circuitry?

Theorem: Given a repressor @ and a desired set point we have:
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Steady-State Errors in Deterministic Non-ideal Settings
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Question: Given that the non-ideal sAIF controller does not perfectly reject disturbances,
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© unono,

Theorem: Given a repressor @ and a desired set point we have: 10°

sAIF fP

oxr, oxy, : output

— < |=~| for any monotonic process.

OA OA o
71

5 833L sAIF 0 | . | .
on | 0A 0 5 10 15 20

steady-state output (pre-disturbance)

—
<

—t
<
N

relative steady
state error

—
<
w

Maurice Filo, ETH Zurich University of Cambridge



Stationary Noise in Stochastic Non-ideal Settings
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Stationary Noise in Stochastic Non-ideal Settings
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Stationary Noise in Stochastic Non-ideal Settings
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Stationary Noise in Stochastic Non-ideal Settings
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Genetic Implementations
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Inteins: A Swiss Army Knife for Synthetic Biology

flanked protein

flanked protein =~ T domain C’
domain N
Split Intein 1: IntN g T Split Intein 2: IntC
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domain C domain N’

Anastassov, S., Filo, M., & Khammash, M. (2024). Inteins: A Swiss army knife for synthetic biology. Biotechnology
Advances.
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Inteins: A Swiss Army Knife for Synthetic Biology

Each protein domain has a specific function

flanked protein

flanked protein =~ T domain C’
domain N
Split Intein 1: IntN g T Split Intein 2: IntC
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domain C domain N’
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Advances.

Maurice Filo, ETH Zurich University of Cambridge



Inteins: A Swiss Army Knife for Synthetic Biology

Splicing reaction yields new protein products with new functions!

Anastassov, S., Filo, M., & Khammash, M. (2024). Inteins: A Swiss army knife for synthetic biology. Biotechnology
Advances.

Maurice Filo, ETH Zurich University of Cambridge May, 2025



Minimal Pl: Genetic Implementation with Inteins
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Minimal Pl: Genetic Implementation with Inteins
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Minimal Pl: Noise

rAlF was seen experimentally to achieve RPA but with a significant increase in noise.

Aoki, S. K., Lillacci, G., Gupta, A., Baumschlager, A., Schweingruber, D., & Khammash, M. (2019). A universal
biomolecular integral feedback controller for robust perfect adaptation. Nature.
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Minimal Pl: Noise

rAlF was seen experimentally to achieve RPA but with a significant increase in noise.
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Design & Analysis of Complex Biomolecular Controllers
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Anastassov®, S., Filo*, M., Chang, C. H., & Khammash, M. (2023). A cybergenetic framework for engineering intein-
mediated integral feedback control systems. Nature Communications.
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Question 1: Does thls controller achieve RPA?

Anastassov®, S., Filo*, M., Chang, C. H., & Khammash, M. (2023). A cybergenetic framework for engineering intein-
mediated integral feedback control systems. Nature Communications.
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Design & Analysis of Complex Biomolecular Controllers
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Question 1: Does thls controller achieve RPA?

Answer: Theorem 1 (RPA Test)

* Provides sufficient algebraic conditions for RPA
» Valid in both deterministic & stochastic settings
 Easy to check graphically

Anastassov®, S., Filo*, M., Chang, C. H., & Khammash, M. (2023). A cybergenetic framework for engineering intein-
mediated integral feedback control systems. Nature Communications.
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Design & Analysis of Complex Biomolecular Controllers
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Question 1: Does thls controller achieve RPA? Question 2: How to analyze such complex controllers?
Answer: Theorem 1 (RPA Test)

* Provides sufficient algebraic conditions for RPA
» Valid in both deterministic & stochastic settings
 Easy to check graphically

Anastassov®, S., Filo*, M., Chang, C. H., & Khammash, M. (2023). A cybergenetic framework for engineering intein-
mediated integral feedback control systems. Nature Communications.

Maurice Filo, ETH Zurich University of Cambridge



Design & Analysis of Complex Biomolecular Controllers
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Question 1: Does thls controller achieve RPA? Question 2: How to analyze such complex controllers?

Answer: Theorem 1 (RPA Test) Answer: Theorem 2 (Model Reduction)

* Provides sufficient algebraic conditions for RPA * Provides an easy-to-use recipe for model reduction

» Valid in both deterministic & stochastic settings » Uncovers the underlying control architectures

 Easy to check graphically - Marries singular perturbation theory to deficiency-zero theorem

Anastassov®, S., Filo*, M., Chang, C. H., & Khammash, M. (2023). A cybergenetic framework for engineering intein-
mediated integral feedback control systems. Nature Communications.
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Conclusions

Molecular integrators are essential for robust control in living cells, but present significant
challenges:

- Difficult to implement biologically

» Susceptible to poor dynamics and amplified noise
* Prone to windup effects

- May exhibit leakage
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Conclusions

Molecular integrators are essential for robust control in living cells, but present significant
challenges:

- Difficult to implement biologically

» Susceptible to poor dynamics and amplified noise
* Prone to windup effects

- May exhibit leakage

Control theory provides key solutions:
- Developed theory for intein-based implementations
» Designed augmented circuits realizing molecular PID controllers
» Established theory for molecular anti-windup circuits
- Enhanced architectures that diminish leakage effects

Looking ahead:
» Control theory will drive synthetic biology forward.
» Next Steps: Develop the theory tailored to applications in cell therapy and bio-production

Maurice Filo, ETH Zurich University of Cambridge
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